Энергосистемы Дальнего Востока.




В настоящий момент Дальневосточная энергосистема представляет собой сеть предприятий, связанных под общей управляющей компанией ОАО «Дальэнерго».

Тепловые станции и тепловые электроцентрали (по очередности запуска):

· Владивостокская ТЭЦ-1;

· Артемовская ТЭЦ;

· Партизанская ГРЭС;

· Владивостокская ТЭЦ-2;

· Приморская ГРЭС;

Подстанции (110 КВт и свыше):

· Находкинская ЭПС;

· Преображенская ЭПС;

· Надеждинская ЭПС (стр.);

· Дальневосточная ЭПС;

· Спасская ЭПС;

· Чугуевская ЭПС;

· Лесозаводская ЭПС и др.


§ 2. Схема преобразования энергии на ТЭС.


Технологически любая ТЭС оформляется в виде определенной схемы движения и преобразования энергии. Так, подавая на вход этой схемы некоторое топливо Х, можно различными путями получать на выходе электроэнергию. В зависимости от того, какое топливо применяется на электростанции, разрабатывается принципиальная схема работы этой станции. На данный момент существует пять основных цепей преобразования энергии, реализованных на практике. Они показаны ниже:

Схема I – основная для стационарных установок. Это наиболее общая схема построения типовых тепловых электростанций.

Схема II – транспортабельная энергетическая установка, работающая за счет расширения продуктов сгорания. Иначе это принципиальная схема двигателя внутреннего сгорания, изобретенного Отто в 1876 году (за что получил медаль), который работал на газе. ДВС также работают на бензине, дизельном топливе.

Другим видом ТЭУ являются движители – устройства для перемещения аппаратов в сплошной среде (воде, воздухе и т.д.). К движителям относятся реактивные двигатели (внешнего сгорания). Устройство реактивного двигателя представляет собой бак, куда подается топливо, зажигательное устройство (как правило, это свеча), сопловой элемент, который выходит своими концами непосредственно в сплошную среду. За счет расширения продуктов сгорания внутри бака происходит их выход наружу через сопловой аппарат. Благодаря свойствам сопла, скорость и давление выходящего газа (жидкости или иного продукта сгорания) увеличиваются, за счет чего происходит толкательный момент движителя при соприкосновении с упругой средой. В результате, при правильном подборе конструкции двигателя, можно развивать скорости, приближенные к скоростям звука. Ракетные двигатели, являясь частными случаями реактивного двигателя, также делятся на одноконтурные и многоконтурные, реактивные и турбореактивные, прямые и реверсивные, которые служат для разных целей при полете.

Для того чтобы на стационарных ТЭС развивать номинальные мощности в короткое время, используют газотурбинные установки (ГТУ). Эти установки представляют собой турбины, которые работают не за счет энергии пара, а за счет расширения продуктов сгорания газа. Таким образом, используя ГТУ некоторое время после остановки основной паровой турбины до ее полного разгона, можно восполнять потери электроэнергии в энергосистеме, не лишая ее потребителей.

Схема III – безмашинное преобразование энергии топлива в электричество. Если плазму направить в магнитогидродинамический канал, то она, проходя через силовые линии магнитного поля, преобразуется в механическую энергию, а на концах полюсов магнитов образуется постоянный ток. Проблема таких установок встает в том, как получить высокотемпературную плазму, подобрать правильное устройство гидромагнитного канала и материалы для транспортировки плазмы. Однако существовали такие установки совместного США с Россией производства, которые по причине «холодной войны» между этими двумя государствами исчезли в неизвестном направлении.

Схема IV – получение электроэнергии путем конвертации ее из тепловой посредством электрохимических реакций материалов.

В 1821 году Зеебек получил прямое преобразование тепловой энергии в электрическую в термоэлектрическом генераторе.

 

А, В – разнородные проводники

 

ТГ – энергия тепла

 

Токр – температура окружающей среды

 

 


Эффект Зеебека более ста лет используется для измерения температур в термопарах.

~1880 году – Эдисон открыл явление термоэмиссии электронов; эффект назван в его честь. Суть термоэмисии состоит в том, что при нагревании одной из двух параллельных пластин из разного материала, между которыми имеется воздушная прослойка, происходит отдача электронов от нагретой пластины той, что имеет температуру окружающей среды. Эффект Эдисона применялся в полупроводниковых лампах до 1947 года – когда появились транзисторы.

Чуть позднее, в 1895 году, Герц выявляет фотоэффект у светочувствительных пластин разнородных материалов. При попадании солнца на поверхность этих материалов происходит процесс эмиссии электронов, который усиливается, если напротив пластины поместить принимающую сетку, которая притягивает электроны и является анодом данного энергетического элемента.

Схема V – прямое преобразование химической энергии в электрическую (без горения). Основой этой системы является электролитический материал. Взаимодействуя с анодом посредством химической реакции, последний сильно ионизируется, в результате чего на нем оседают электроны электролита, и возникает ЭДС. На данный момент такой способ получения энергии считается самым надежным, но одновременно и самым дорогим. Однако ведутся исследования на предмет создания специальных недорогих ионизирующих аппаратов, которые для специально подобранных материалов увеличивают силу и скорость отдачи электронов, а, следовательно, и мощность энергетической установки. Также изучается процесс восстановления проработанных материалов реакций в специальных вакуумных антиокислителях[1].

Таким образом, широкое распространение в XX веке получили лишь схемы (I) для стационарных ТЭС и (II) для транспортабельных ТЭУ.

 
 

Рассмотрим принципиальную схему типовой ТЭС, достоинства и недостатки современного оборудования и тенденции в оснащении и модернизации аппаратуры тепловых электростанций.

В начале этой схемы располагается одно из ключевых устройств ТЭС – паровой котел. В него поступает топливо в виде угля, мазута, газа и т.д., где оно и сжигается огромным факелом. Факел нагревает трубы котла, по которым циркулирует нагретая вода, за счет чего вода превращается в пар для дальнейшего хода по узлам электростанции. Основные характеристики котлов: паропроизводительность (кг/час), КПД (%), мощность (кВт), максимальное давление (бар, атм.), поверхность нагрева (м2), температура перегрева (К). На Владивостокских ТЭЦ кроме котлов, обслуживающих турбины, имеются котлы для подготовки сетевой воды, поступающей непосредственно в системы отопления города. Питаются котлы частично от отработанной воды (конденсата) и частично от питательной воды, поступающей из цеха химической очистки. Ввиду того, что в котле постоянно поддерживаются высокие давление и температура, происходит подгорание и деформация кипятильных труб, оседание накипи и золы. Поэтому на станциях устанавливают несколько котлов для обеспечения бесперебойной подачи электроэнергии, если один из котлов выйдет из строя. Именно с котлов начинают осмотр, когда на станции происходят неполадки технического характера, например, выход из строя ступеней турбин, каминных укреплений или ржавление металлических деталей.

Далее после котлов в этой схеме следует турбина – основной преобразователь тепловой энергии в механическую энергию вращательного движения. Турбина состоит из нескольких ступеней, на которые подается пар различного давления. Ступень турбины представляет собой два основных элемента: роторную и статорную части. На роторе по всему диаметру на определенном расстоянии друг от друга закреплены лопатки турбины. На них через сопловые аппараты поступает пар, который, подчиняясь законам аэродинамики, начинает вращать лопатку, а, следовательно, и весь ротор. Статор же служит для того, чтобы ротор не раскачивался от действующего на него давления. На последних ступенях турбины для экономии пара также ставятся элементы каминных уплотнений.

Следующим преобразователем одного вида энергии в другую после турбины является индуктивный электрогенератор. Подключенный к вращательному валу турбины, он перенимает механическое движение и преобразует его в электрический ток по закону магнитной индукции и закону ЭДС. Генераторы переменного тока характеризуются частотой подаваемого тока (рассчитывается по формуле T = νт / 60, где νт – число оборотов в минуту турбины), мощностью, силой тока и напряжением на выходе.

Отработанный пар собирается внизу турбины и по трубам уходит в следующий агрегат, служащий для охлаждения пара и создания разности давлений, – конденсатор. Образно конденсатор представляет собой объемный баллон, внутри которого спиралевидно и многоступенчато расположены трубы, по которым циркулирует охлаждающая вода. Для создания большей тяги, а, значит, и давления пара, в модернизированных конденсаторах создается специальная кабина с разреженным воздухом. Так как конденсатор подвергается обширной эрозии, важно не допустить протекания его охлаждающей воды в конденсат. Иначе это может привести, прежде всего, к порче котлов и турбин на электростанции. Особенно для электростанций города Владивостока, где в качестве охлаждающей воды используется морская.

Дальнейший ход конденсата не заканчивается сливом его на свободу, а служит в целях экономии пресной воды для подпитки котлов. Чтобы вся скопившаяся вода шла непременно в котельный цех, действует питательный насос. Он накачивает воду в цех водоподготовки, где она проходит дополнительную очистку и опять поступает в трубы котла.

Таким образом, мы рассмотрели полную схему стационарной ТЭС со всеми ее основными элементами и преобразованиями энергий из одной в другую. Однако, как и во всякой схеме, в ней имеется ряд недостатков, связанный, прежде всего, с грубыми недоделками, сделанными во время производства соответствующих аппаратов, а также в связи с потерей энергии из-за побочных сил, влияющих на систему в целом (сила трения, теплоотдача в атмосферу, большой вес деталей машин и т.д.).

Рассмотрим особенности систем регулирования парораспределения турбины: именно это в большей степени влияет на работу и показатели последней, цитируя [3].

При проведении анализа выявили ряд особенностей гидравлических систем регулирования паровых турбин, которые отсутствуют в современных силовых гидравлических приводах.

Во первых, имеет место объединение системы регулирования турбины и системы смазки её подшипников. Обе системы питаются от одного насоса и имеют общий слив. В результате неизбежного износа подшипников турбины (подшипники скольжения), в рабочую жидкость систем поступает большое количество металлических частиц, свободно проникающих во все элементы системы регулирования, что повышает вероятность появления отказов из‑за заклинивания подвижных пар.

Во вторых, в объединённой системе практически отсутствует необходимая фильтрация рабочей жидкости. Применены фильтры грубой очистки. Отсутствуют защитные фильтры тонкой очистки перед чувствительными элементами. Отсутствует байпасная система фильтрации.

В третьих, практически все системы регулирования имеют низкий уровень рабочего давления 0,7-1,4 МПа, который в 10-20 раз меньше рабочего давления современных гидроприводов аналогичного назначения.

Необходимость развития системой регулирования определенной мощности на органах парораспределения турбины, определяемой обеспечением перестановочного усилия и заданной скорости перемещения

 

P = F · v кВт,

где F – перестановочное усилие Н, v – скорость перемещения м/с,

при низком рабочем давлении Рр приводит к необходимости обеспечения больших расходов жидкости, так как

 

F · v = Рр · qv,

где Рр – рабочее давление Н/м2, qv – объёмный расход м3/с.

Всё это приводит к увеличению диаметров поршней сервомоторов органов парораспределения и к увеличению диаметров управляющих золотников. Так на турбине Т-100-130 диаметр поршня сервомотора части высокого давления составляет 300 мм, а диаметры золотников находятся в пределах 7595 мм.

Увеличение диаметра управляющих золотников вызывает увеличение их массы, а значит и инерционности системы. При этом возникает ряд сложных технологических проблем по обеспечению необходимой геометрии деталей золотниковой пары, по обеспечению минимального зазора, по обеспечению качества рабочей поверхности – твердости порядка HRC 5065, чистоты поверхностей и т. д. Следствием этого являются увеличенные зазоры в золотниковых парах, резкое увеличение усилий страгивания и сил трения.

С повышенными расходами в системах регулирования паровых турбин связана необходимость в больших объёмах жидкости, которая усугублятся недостаточной эффективностью теплообменных аппаратов.


Литература

1) 90 лет Владивостокской ТЭЦ-1. Тепловые сети ОАО «Дальэнерго». – Владивосток: изд-во «Дальпресс». – 2002. – 96 с.

2) Дальэнерго. Фотоальбом. – Владивосток: изд-во «Дальэнерго», 1997. – 80 с.

3) Орлов Ю.М., Хлебутин А.А. Особенности систем регулирования паровых турбин. – Тезисы докладов. – Пермь: ПГТУ. – 1999. – 1 с.

4) СЭС. / Под ред. А.М. Прохорова. – М.: Советская энциклопедия. – 1988. – 1599 с.


 

Содержание

1) История энергетики дальнего Востока……………………………………………………3

· Первенец большой энергетики Дальнего Востока……………………………...3

· Становление Владивостокской станции………………………………………….7

· Образование РУ «Дальэнерго»…………………………………………………….8

· Календарь знаменательных дат……………………………………………………9

· Энергосистемы Дальнего Востока………………………………………………..11

2) Схема преобразования энергии на ТЭС………………………………………………...12

3) Литература……………………………………………………………………………………17


[1] Информация получена из частично засекреченных источников и поэтому может являться не вполне достоверной.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-03-31 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: