Транспонирование матрицы




Линейные однородное д.у. второго порядка с постоянными коэффициентами

Определение Линейные однородные д.у. второго порядка с постоянными коэффициентами имеет вид

=0

(Для решения этого уравнения составляем характеристическое уравнение ).

Теорема 1) Пусть характеристическое уравнение имеет действительные корни l1 и l2, причем . Тогда общее решение уравнения имеет вид

(С1, С2 – некоторые числа).

2) Если характеристическое уравнение имеет один корень l (кратности 2),то общее решение имеет вид

(С1, С2 – некоторые числа).

3) Если характеристическое уравнение не имеет действительных корней, то общее решение имеет вид

, где

, С1, С2 – некоторые числа.


НЕОБХОДИМЫЕ ФОРМУЛЫДЛЯ РЕШЕНИЯ ЗАДАЧ О КАСАТЕЛЬНОЙ

 

Общее уравнение прямой:

Ax+By+C=0

Уравнение прямой с угловым коэффициентом:

y=kx+b

(k=tgj коэффициент прямой равен тангенсу угла наклона этой прямой)

Если две прямые y=k1x+b1 и y=k2+b2 параллельны, то k1=k2.

Если две прямые y=k1x+b1 и y=k2+b2 перпендикулярны, то k1*k2=-1.

Уравнение прямой, проходящей через данную точку в данном направлении(известен коэффициент k):

Пусть прямая проходит через точку M1(x1;y1) и образует с осью Ox угол

y-y1=k(x-x1)

Уравнение прямой, проходящей через две данные точки M1(x1;y1) и M2(x2;y2):

Уравнение касательной к кривой y=f(x) в точке x0 примет вид

y-f(x0)=f¢(x0)(x-x0)

Геометрический смысл производной:

f¢(x0)=k=tga

(производная f¢(x0) есть угловой коэффициент(тангенс угла наклона) касательной, проведенной к кривой y=f(x) в точке x0)


МАТРИЦЫ

Определение: Матрицей размера m n называется прямоугольная таблица чисел, содержащая m строк и n столбцов. Числа, составляющие матрицу, называются элементами матрицы.

 

Матрица размера m n:

.

Виды матриц

Определение: Матрица, состоящая из одной строки, называется матрицей (вектором)-строкой, а из одного столбца – матрицей (вектором)- столбцом.

Пример:

; .

Определение: Матрица называется квадратной n - го поряд ка, если число ее строк равно числу столбцов и равно n.

Пример:

- квадратная матрица третьего порядка.

Определение: Элементы матрицы aij, у которых номер столбца равен номеру строки (i=j), называются диагональными и образуют главную диагональ матрицы.

Определение: Если все недиагональные элементы квадратной матрицы равны нулю, то матрица называется диагональной.

Пример:

- диагональная матрица третьего порядка.

Определение: Если у диагональной матрицы n -го порядка все диагональные элементы равны единице, то матрица называется единичной матрицей n -го порядка, она обозначается буквой E.

Пример:

- единичная матрица второго порядка;

- единичная матрица третьего порядка.

Определение: Матрица любого размера называется нулевой, если все элементы равны нулю.

 

Операции над матрицами

Умножение матрицы на число

Каждый элемент матрицы умножается на это число.

Пример:

, 0,5 .


Сложение матриц

!!! Можно складывать матрицы только одинаковых размеров.

Матрицы складываются поэлементно.

Пример:

.

 

Вычитание матриц

!!! Можно вычитать матрицы только одинаковых размеров.

Матрицы вычитаются поэлементно.

Пример:

.

 

Умножение матриц

!!! Матрицу А можно умножить на матрицу В, если число столбцов матрицы А равно числу строк матрицы В.

Произведением матрицы называется такая матрица , каждый элемент которой cij равен сумме произведений элементов i- ой строки матрицы А на соответствующие элементы j -го столбца матрицы В.

 

Возведение в степень

Целой положительной степенью Аm (m>1) квадратной матрицы А называется произведение m матриц равных А, т.е.

.

Пример:

, найти А2.

 

Транспонирование матрицы

Транспонированная матрица – матрица, в которой строки и столбцы поменялись местами с сохранением порядка. Обозначается .

Пример:

.

Обратная матрица

Определение: Матрица называется обратной по отношению к квадратной матрице А, если при умножении этой матрицы на данную как справа, так и слева получается единичная матрица, т.е.

.

!!! Обратная матрица существует и единственна тогда и только тогда, когда исходная матрица невырожденная (т.е. определитель матрицы отличен от нуля).

Алгоритм вычисления обратной матрицы:

1. Находим определитель матрицы, т.е. .

2. Находим транспонированную матрицу, т.е. .

3. Находим присоединенную матрицу, т.е (матрица, состоящая из алгебраических дополнений к элементам транспонированной матрицы).

4. Вычисляем обратную матрицу по формуле .

5. Проверяем правильность вычисления, исходя из определения обратной матрицы.

Ранг матрицы

Определение: Ранг матрицы – это наивысший порядок, отличных от 0, миноров матрицы.

!!! Чтобы найти ранг матрицы нужно сначала привести матрицу с помощью элементарных преобразований к ступенчатому виду (все элементы, стоящие ниже главной диагонали, равны 0).

Элементарными называются следующие преобразования матриц:

1) умножение всех элементов какой-либо строки (столбца) матрицы на одно и то же число, отличное от нуля;

2) прибавление к элементам какой-либо строки (столбца) матрицы соответствующих элементов другой строки (столбца), умноженных на одно и то же число;

3) перемена местами строк (столбцов) матрицы;

4) отбрасывание строк (столбцов) матрицы, все элементы которых равны нулю.


МЕТОД НАИМЕНЬШИХ КВАДРАТОВ

На практике часто сталкиваемся с задачей о сглаживании экспериментальных зависимостей.

Пусть зависимость между двумя переменными x и y выражается в виде таблицы, полученной опытным путем. Это могут быть результаты опыта или наблюдений, статистической обработки материала и т.п.

 

xi x1 x2 xn
yi y1 y2 yn

 

Требуется наилучшим образом сгладить экспериментальную зависимость между переменными x и y, т.е. по возможности точно отразить общую тенденцию зависимости y от x, исключив при этом случайные отклонения, связанные с неизбежными погрешностями измерений или статистических наблюдений. Такую сглаженную зависимость стремятся представить в виде формулы y=f(x) – эмпирическая формула.

Задача нахождения эмпирической формулы разбивается на два этапа:

- устанавливается вид зависимости y=f(x), т.е. решить, является ли она линейной, квадратичной, логарифмической или какой-либо другой (в нашей задаче зависимость линейная - y=ax+b);

- определение неизвестных параметров этой функции по методу наименьших квадратов, согласно которому, в качестве неизвестных параметров функции f(x) выбирают такие значения, чтобы сумма квадратов отклонений «теоретических» значений f(xi), найденных по эмпирической формуле y=f(x), от соответствующихопытных значений была минимальной, т.е.

(в нашей задаче ).

В результате решения такой экстремальной задачи с помощью частных производных:

,

получаем систему нормальных уравнений, из которой находим параметры a и b линейной зависимости:

.


НЕОБХОДИМЫЕ ОПРЕДЕЛЕНИЯ И ФОРМУЛЫДЛЯ ВЫЧИСЛЕНИЯ ИНТЕГРАЛОВ

Определение: Функция F(x) называется первообразной для функции f(x) на промежутке Х, если в каждой точке этого промежутка F¢(x)=f(x).

Определение: Совокупность всех первообразных для функции f(x) на промежутке Х называется неопределенным интегралом от функции f(x) и обозначается , т.е.

.

Формула Ньютона-Лейбница (для вычисления определенных интегралов):

Формула для вычисления дифференциала функции y=f(x):

dy=f¢(x)dx.

Некоторые свойства неопределенного и определенного интегралов:

Н.и. , где с – некоторое число,

О.и. , где с – некоторое число;

Н.и. ,

О.и. .

 

!!! Неопределенный интеграл находится приведением интеграла к табличному (сумме табличных) с помощью этих двух свойств или с помощью таких приемов, как методы интегрирования заменой переменных и по частям.

Формула замены переменной в неопределенном интеграле:

, где - функция, дифференцируемая на рассматриваемом промежутке.

Формула замены переменной в определенном интеграле:

, где - функция имеет непрерывную производную на отрезке [a,b].

Формула интегрирования по частям в неопределенном интеграле:

,

где u=u(x), v=v(x) – дифференцируемые функции переменной х.

При этом

Постоянную С в выражении для v в формуле интегрирования по частям полагают равной 0.

Формула интегрирования по частям в определенном интеграле:

,

где u=u(x), v=v(x) – функции, имеющие непрерывные производные на отрезке [a,b].

Табличные интегралы

;

;

;

;

;

;

;

;

;

.


ОПРЕДЕЛИТЕЛИ

Определение. Пусть дана квадратная матрица второго порядка

.

Определителем (или детерминантом) второго порядка, соответствующим данной матрице, называется число, получаемое по правилу:

.

Определение. Пусть дана квадратная матрица третьего порядка

.

Определителем (или детерминантом) третьего порядка, соответствующим данной матрице, называют число, получаемое по правилу:

.

Для того, чтобы запомнить, какие произведения в правой части соотношения следует брать со знаком “+”, какие – со знаком “–”, полезно следующее графическое правило, называемое правилом треугольников:

       
   
 

 


– со знаком “+”; – со знаком “–”.

 

 


ПРЕДЕЛЫ

 

Основные понятия и определения

Определение: Функция называется бесконечно малой величиной (БМВ) при или при , если ее предел равен нулю:

.

Свойства бесконечно малых величин:

- алгебраическая сумма конечного числа бесконечно малых величин есть величина бесконечно малая;

- произведение БМВ на ограниченную функцию есть БМВ;

- частное от деления БМВ на функцию, предел которой отличен от 0, есть БМВ.

Определение: Функция называется бесконечно большой величиной (ББВ) при или при , если ее предел равен бесконечности.

!!! Если - БМВ при или при , то функция является ББВ при или при . Верно и обратное утверждение.

Свойства бесконечно больших величин:

- сумма ББВ и ограниченной функции, есть ББВ;

- произведение ББВ на функцию, предел которой отличен от 0 есть ББВ;

- частное от деления ББВ на функцию, имеющую предел, есть ББВ.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-03 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: