отделением и короткозамыкателем.




Тенденции в развитии современных воздушных выключателей.

1. Модульный принцип построения серий. Этот принцип позволяет строить серии в весьма большом диапазоне напряжений (35—1150 кВ) из одинаковых модулей, производить по модульные испытания и иметь максимально выгодные условия производства, эксплуатации и монтажа. Наметилась тенденция существенного увеличения напряжения, приходящегося на один модуль (250 кВ и выше).

2. Размещение дугогасительных устройств непосредственно в сжатом воздухе. При этом обеспечиваются максимальная коммутационная способность, быстродействие, изоляционная прочность межконтактных промежутков и пропускная способность по номинальному току. Наибольшее применяемое сейчас давление достигает 6-8,5 МПа.

3. Применение быстродействующих систем управления с малым разбросом времени оперирования. Основным назначением таких систем является обеспечение работы выключателей на очень высокие напряжения с временем отключений до одного полупериода, а также выключателей с синхронным отключением или включением.

4. Ограничение коммутационных перенапряжений, что особенно важно для выключателей высших классов напряжения.

5. Повышение надежности и увеличение межремонтных сроков до 15—20 лет.

6. Введение принудительного охлаждения для генераторных выключателей.

1-4. ВЫКЛЮЧАТЕЛИ ЭЛЕГАЗОВЫЕ

 

Конструкции элегазовых выключателей выполняются в основном с автокомпрессорным дутьем или магнитным дутьем.

При первом способе электрическая дуга охлаждается элегазом, который перетекает из резервуара высокого давления (около 1 МПа) в резервуар низкого давления (0,3 МПа), т. е. используется тот же принцип, что и в воздушном выключателе. Схема дугогасительного устройства с автокомпрессорным продольным дутьем приведена на рис. 1-12, а. Подвижный контакт 2 вместе с изоляционным соплом 3, перегородкой 4 и цилиндром 5, отходя от неподвижного контакта 1, надвигается на поршень 6. Элегаз через отверстия в перегородке и сопло омывает дугу с большой скоростью и гасит ее через 0,02-0,03 с.

 

Рис. 1-12. Схемы дугогасительных устройств элегазовых выключателей:

а – с явтокомпрессорным дутьем; б – с магнитным дутьем.

Рис. 1-13. Схема полюса элегазового выключателя для КРУЭ на 220 кВ

 

Избыточное давление в этих выключателях получается за счет энергии привода, и оно значительно. Ввиду этого здесь применяется пневматический привод. Поскольку давление, необходимое для гашения дуги, появляется в процессе движения контактов, то снижение времени гашения дуги (в частности, до 0,01 с) такое дугогасительное устройство не может обеспечить.

Схема дугогасительного устройства с магнитным дутьем приведена на рис. 1-12,6. Устройство размещается в изоляционном цилиндре 1, наполненном элегазом. На дугу, возникающую между расходящимися контактами 2 и 3, действует радиальное магнитное поле, создаваемое постоянными магнитами 4 (или последовательной катушкой). Дуга быстро перемещается по окружности, усиленно охлаждается и гаснет. Такие устройства применяются в выключателях нагрузки.

Для комплектных распределительных устройств с элегазовой изоляцией (КРУЭ) напряжением 110 и 220 кВ ВЭИ и ЛенПО «Электроаппарат» разработали, изготовили и испытали выключатели с Iном = 2000 А, Iо ном = 40 кА, временем отключения 0,065 с, временем гашения 0,080 с, номинальным давлением элегаза 0,7 МПа, номинальным давлением привода 2,0 МПа [36].

Схема полюса элегазового выключателя для КРУЭ на 220 кВ приведена на рис. 1-13. Неподвижный контакт 5 прикреплен к баку 1 на литом изоляторе 6. Выключатель имеет два дугогасительных устройства 4 с автокомпрессорным дутьем (см. рис. 1-12, а), они же подвижные контакты. Дугогасительные устройства соединены последовательно перемычкой 3, равномерное распределение напряжения между устройствами обеспечивается керамическими конденсаторами 8. Подвижный контакт 4 приводится в движение изоляционной штангой 9 через рычажный механизм 11. Подвижный контакт и конденсаторы закрыты экраном 2. Цилиндр 10 изолирует контакты 4 от бака. Выключатель заполнен элегазом (при давлении 0,55 МПа). Неподвижные контакты 5 выведены из бака через вводы элегаз - элегаз. Изоляционная перегородка 7 ввода герметизирует объем бака и позволяет сохранить элегаз в выключателе при отсоединении его от КРУЭ.

 

1-5. ВЫКЛЮЧАТЕЛИ ЭЛЕКТРОМАГНИТНЫЕ

 

Выключатели электромагнитные обладают теми достоинствами, что для своей работы не требуют ни масла, ни сжатого воздуха, ни тем более элегаза, они допускают большое число включений. Однако отключающая способность их ограничена по напряжению. Гашение в электромагнитных выключателях основано на воздействии на ствол дуги и достижении падения напряжения на стволе дуги, большего приложенного. Они находят применение как выключатели для КРУ на напряжение 6—20 кВ, токи до 3200 А при частых коммутациях (выключатели нагрузки — выключатели в цепях мощных двигателей и других нагрузок).

Гашение дуги здесь осуществляется при помощи магнитного дутья в камерах с продольными (прямыми, извилистыми и т. п.) щелями. Катушки магнитного дутья и токопроводы к ним обычно при замкнутых контактах не обтекаются током. При отключении возникающая дуга перебрасывается на эти детали и включает их последовательно в цепь тока. Возбуждается поле гашения дуги. Дуга гаснет, ток в цепи обрывается. Таким образом, эти детали находятся под током только на время гашения — примерно 0,02 с.

 

 

Рис. 1-14. Контактная и дугогасительная системы электромагнитного выключателя.

 

На рис. 1-14, а представлена схема контактной и дугогасительной систем электромагнитного выключателя. Контактная система состоит из основных 1 и 2 и дугогасительных 3 и 10 контактов, последние имеют дугостойкие напайки. Дугогасительная система состоит из изоляционной камеры 4 и охватывающего камеру П-образного магнитопровода 5, на среднюю часть которого надета дугогасительная катушка 6. Внутри камеры размещен пакет дугогасительных керамических пла­стин 8, расположенных на небольшом расстоянии друг от друга. В нижней части пластины имеют вырезы, постепенно сужающиеся кверху. Пластины образуют постепенно сужающуюся зигзагообразную щель (рис. 1-14,6). По бокам пакета укреплены дугогасительные рога. Рог 7 электрически соединен только с дугогасительной катушкой. Второй конец катушки присоединен к неподвижному контакту. Рог 9 соединен с подвижным контактом. При замкнутых контактах катушка не обтекается током. Возникающая при размыкании контактов дуга движется сначала под действием только электродинамических сил контура (положения А и Б) и перебрасывается этими силами на рога 7 и 9. При этом в контур тока включается дугогасительная катушка, и созданное ею магнитное поле загоняет дугу в решетку (положения В, Г и Д), где и происходит ее гашение. Многие дугогасительные устройства имеют пламегасительные решетки.

В системах с электромагнитным дутьем затруднено гашение малых токов ввиду соответственно малых электродинамических сил, подчас недостаточных для растяжения дуги и переброса ее на рога. Поэтому многие конструкции снабжаются небольшим автопневматическим устройством, связанным с подвижной системой и действующим на начальном этапе расхождения контактов.

Все три полюса выключателя монтируются на стальной сварной раме, имеющей катки. В нижней части рамы расположен привод. Как правило, привод электромагнитный, но может быть и другой. На опорных фарфоровых изоляторах, закрепленных на вертикальной стойке рамы, укреплены контактная и дугогасительная системы. Токоподводы при встройке выключателя в КРУ снабжаются втычными контактами. Подвижные контакты трех полюсов связаны изоляционными тягами с общим валом выключателя. Дугогасительная камера и контакты каждого полюса закрыты изоляционным кожухом, отделяющим полюсы выключателя друг от друга и от стенок распределительного устройства.

Механическая износостойкость выключателей-до 50000 циклов, коммутационная — 5000 отключений.

 

1-6. ВЫКЛЮЧАТЕЛИ ВАКУУМНЫЕВ

 

В вакуумных выключателях гашение дуги происходит в высоком вакууме. Высокие дугогасящие свойства этой среды позволили создать выключатели на напряжение до 35кВ. Благодаря своим преимуществам вакуумные выключатели вытесняют другие выключатели, в том числе и электромагнитные, особенно в диапазоне напряжений 6—10кВ.Основные их преимущества:

отсутствие компрессорных установок, масляного хозяйства, а также необходимости в пополнении и замене дугогасящей среды;

высокая механическая и коммутационная износостойкость (до 5-105 и 106 операций соответственно);

минимум обслуживания, бесшумность и чистота, снижение эксплуатационных затрат (почти в два раза), срок службы 25 лет;

полная взрыво- и пожаробезопасность. Недостатками вакуумных выключателей являются:

трудности разработки и изготовления, связанные с созданием вакуумно-прочных материалов и специальных контактных материалов, сложностью вакуумного производства;

большие капитальные вложения, необходимые для организации массового производства.

Дугогасительное устройство (ДУ) выключателя выполняется как герметичный сосуд, давление внутри которого равно 1,33(10-4....10-6) Па. Нажатие подвижного контакта на неподвижный создается за счет атмосферного давления. При больших номинальных токах ставится дополнительная контактная пружина.

 


Рис. 1-15. Вакуумное дугогасительное устройство.

Рис. 1-16. Выключатель вакуумный на 1600 А серии ВВЭ-10

 

Пример конструкции вакуумного ДУ приведен на рис. 1-15. ДУ представляет собой изоляционный (керамический) вакуумно-прочный ребристый цилиндр 10, закрытый фланцами 2. Внутри цилиндра расположены неподвижные контакт 8 и токоподвод 9, подвижные контакт 6 и токоподвод 3 (7 — дугогасительные контакты). Для снижения переходного сопротивления применяется многоточечный торцевой контакт. Токоподвод 3 связан с корпусом сильфоном 1, чем и обеспечивается возможность перемещения контакта. Сильфон представляет собой цилиндрическую гармошку, выполненную из нержавеющей стали. Внешние шины присоединяются к токоподводу 9 жестко, а к токоподводу 3 — с помощью гибких проводников. Для выравнивания электрического поля и защиты цилиндра 10 от попадания на него металлических частиц (при отключении) служат экраны 4 и 5.

Выключатели вакуумные серии ВВЭ-10 (рис. 1-16) выпускаются на напряжение 10 кВ частотой 50 и 60 Гц, номинальные токи 630—3200 А, отключаемые токи 20—31,5 кА при включаемых ударных токах 52—80 кА.

На основании (выкатной тележке) 5 установлены дугогасительные устройства 2 полюсов с токоподводами 1 и электромагнитный привод 4. Привод с системой рычагов и пружин осуществляет управление контактами — размыкание, удержание контактов в разомкнутом положении и обеспечение их замыкания. Выключатель снабжен соответствующим числом вспомогательных контактов для цепей управления и сигнализации. На фасадной панели 3 размещаются все вспомогательные устройства.

 

ГЛАВА 2

 

Разъединители, отделители и короткозамыкатели. Выключатели нагрузки

 

2-1. РАЗЪЕДИНИТЕЛИ

 

Разъединители — аппараты, предназначенные для включения и отключения участков электрических цепей под напряжением при отсутствии нагрузочного тока [З]. Они применяются во всех высоковольтных установках для обеспечения видимого разрыва при отключении какого-либо участка цепи, а также для производства переключении и набора нужной схемы. Все операции с разъединителями, как правило, выполняются при обесточенных цепях.

Кроме того, разъединители наружной установки рассчитываются на возможность разрыва посредством их ножей зарядных токов воздушных и кабельных линий, а также токов холостого хода силовых трансформаторов и токов небольших нагрузок; поэтому их контакты часто снабжаются дугогасительными рогами.

Отличительной чертой разъединителей, а также отделителей и короткозамыкателей в сравнении с выключателями является отсутствие дугогасительных устройств.

Разъединители строятся для внутренней и для наружной установки на всю шкалу токов и напряжений. Они могут выполняться как трехполюсными на общей раме (обычно при напряжениях до 35 кВ), так и однополюсными при более высоких напряжениях. Последнее обусловлено тем, что при напряжениях свыше 35 кВ требуемые расстояния между фазами достаточно велики и общая рама получается чрезвычайно громоздкой и тяжелой.

 


Рис. 2-1. Разъединитель внутренней установки.

 

Полюс разъединителя независимо от разнообразия конструкций состоит из неподвижного и подвижного (ножа) контактов, укрепленных на соответствующих изоляторах, опорной плиты или рамы и привода.

Основным элементом разъединителя являются его контакты. Они должны надежно работать при номинальном режиме, а также при перегрузках и. сквозных токах короткого замыкания. В разъединителях применяют высокие контактные нажатия. При больших токах контакты выполняют из нескольких (до восьми) параллельных пластин. Применяют пластины прямоугольного, швеллерного и круглого сечений. Для обеспечения высокой электродинамической устойчивости широко используют электромагнитные и электродинамические компенсаторы (часто говорят «замки»).

Разъединители могут иметь приводы: ручной — оперативную штангу, рычажный или штурвальный и двигательный — электрический, пневматический или гидравлический.

Во избежание ошибочных действий, т. е. размыкания под током, что может привести к крупным авариям и несчастным случаям, разъединитель всегда блокируется с выключателем. Блокировка допускает оперирование разъединителем только при отключенном выключателе. По исполнению блокировка может быть механической, механически-замковой, электромагнитно-замковой или другой. Конструктивное различие между отдельными типами разъединителей состоит прежде всего в характере движения подвижного контакта (ножа). По этому признаку различают разъединители [3]:

вертикально-поворотного (врубного) и горизонтально-поворотного типов с вращением ножа в плоскости, параллельной или перпендикулярной осям поддерживающих изоляторов данного полюса соответственно;

качающегося типа с вращением ножа совместно с поддерживающим его изолятором в плоскости, параллельной осям поддерживающих изоляторов данного полюса;

с прямолинейным движением вдоль размыкаемого промежутка либо только ножа, либо ножа совместно с изолятором (катящегося типа);

со складывающимся ножом, со сложным движением (поворот и складывание) ножа;

подвесного типа с перемещением ножа вместе с поддерживающими изоляторами в плоскости, параллельной осям неподвижных подвесных изоляторов.

 

Рис. 2-2. Ведущий полюс разъединителя 35 кВ, 3200 А

1-основание; 2-изолятор; 3 - неподвижный контактный вывод; 4 - подвижный контактный нож с ламелями II; 5 - подвижный контактный нож без ламелей; 6 - подвесной контакт ножей заземления; 7 - приводной вал; 8 - привод; 9 — контактный вывод заземляющего контура; 10 - болт заземления

 

Пример исполнения разъединителя внутренней установки приведен на рис. 2-1. Полюс разъединителя состоит из неподвижных контактов 1, укрепленных на опорных изоляторах 5. Неподвижные контакты охватываются подвижным контактом 2, состоящим из двух ножей. Контактное нажатие создается пружинами 6. Компенсация электродинамических сил в контактах происходит за счет одинаково направленных токов в подвижных ножах. Привод контактов осуществляется через приводной вал 7, соответствующие рычаги и тяговый изолятор 3. Собирается разъединитель на раме 4.

На рис. 2-2 приведена схема ведущего полюса разъединителя горизонтально-поворотного типа.

 

2-2. ОТДЕЛИТЕЛИ И КОРОТКОЗАМЫКАТЕЛИ

 

В настоящее время широко применяются высоковольтные подстанции, на которых входной выключатель В2 (рис. 2-3, а) заменяется отделителем О и короткозамыкателем КЗ, что позволяет упростить и удешевить установку, не ухудшая ее надежности. По схеме рис. 2-3, а трансформатор Г при повреждении отключается выключателем В2. По схеме рис. 10-3,б от сигнала защиты замыкается короткозамыкатель КЗ, создавая короткое замыкание на землю, что приводит к срабатыванию выключателя В1 в начале линии. За время бестоковой паузы цикла автоматического повторного включения (АПВ) размыкается отделитель О, отключая поврежденный трансформатор. Выключатель В1 автоматически вновь включается, восстанавливая питание на остальных трансформаторах.

Отделитель предназначен для автоматического отключения поврежденного участка электрической цепи в момент отсутствия в ней тока, т. е. в период бестоковой паузы цикла АПВ выключателя на питающем конце линии.

Короткозамыкатель предназначен для создания искусственного короткого замыкания с целью вызвать отключение выключателя, установленного на питающем конце линии.

По конструкции отделители и короткозамыкатели суть разъединители с быстродействующими приводами, управляемыми от системы защиты. Примеры их устройства показаны ниже.

Короткозамыкатель (рис. 2-4) состоит из основания 3, на котором установлен соответствующий напряжению изолятор 2 с верхним неподвижным контактом 1 (закрыт кожухом), снабженным выводом для присоединения к линии электропередачи. Основание 3 заземлено и при помощи гибкой связи б соединено с подвижным контактом (ножом) 8. Подвижный контакт вращается на оси 7 и связан с приводом и замыкающей пружиной 4. Привод размыкает контакты (отводит нож) и ставит нож под защелку, взводя при этом пружину. По сигналу от защиты защелка освобождает нож, и под действием пружины контакты замыкаются, таким образом достигается фиксированное быстродействие. Буфер 5. служит для амортизации удара в контактах при включении.

Принципиальная схема короткозамыкателя с отделителем приведена на рис. 2-5.

 


Рис. 2-4. Общий вид (схема) короткозамыкателя.

Рис. 2-3. Схема замещения выключателя

отделением и короткозамыкателем.

 


Рис. 2-5. Принципиальная схема короткозамыкателя с отделителем.

1 — короткозамыкатель; 2 — трансформатор тока; 3 — реле, блокирующее (не разрешающее) отключение отде­лителя до момента прекращения тока короткого замы­кания; 4 — электромагнит для оперативного отключения отделителя; 5 - защелка, удерживающая отделитель во включенном положении; б — отделитель; 7 — отключаю­щая пружина отделителя; 8 и 9 — электромагниты управления защелкой короткозамыкателя; 10 - защелка, удерживающая короткозамыкатель в отключенном по­ложении; II —включающая пружина короткозамыкателя

 

2-3. ВЫКЛЮЧАТЕЛИ НАГРУЗКИ

 

Выключатели нагрузки предназначены для управления высоковольтными синхронными и асинхронными двигателями большой мощности, а также другими нагрузками с малой индуктивностью. Они должны обеспечивать надежную коммутацию токов рабочих режимов (пуск, реверс, торможение, остановка и т. п.) с большой частотой (300-600 вкл/ч). Соответственно этому они должны иметь сравнительно с выключателями намного большую механическую и коммутацион­ную износостойкость. Защита цепей здесь осуществляется соответствующими выключателями или предохранителями.

В настоящее время все шире применяются для указанных целей вакуумные и электромагнитные контакторы вместо ранее применявшихся автогазовых выключателей, которые не удовлетворяют современным требованиям. Ниже приведены некоторые отечественные конструкции.

Контактор вакуумный КВТ-6/10-400-4. Его данные: Uном =6 и 10 кВ; Iном =400 А; Iоткл =4 кА (50 отключений); Iвкл = 15 кА; Iгерм=4 кА (4 с); износостойкость механическая 1-106 циклов, коммутационная 1-105 циклов; частота включений 300 вкл/ч.

Общий вид контактора приведен на рис. 2-6. Контактор состоит из трех по­люсов высокого напряжения, корпусов 2 и 3 электромагнитного привода 4, цепей управления 5. Устройство дугогасительных камер 1 аналогично приведенному на рис. 9-15. Камеры крепятся к верхней опорной части защитного изоляционного корпуса 2. Все другие узлы монтируются на корпусе 3. Нижний вывод 10 и подвижный контакт камеры соединены гибкой связью 9. Для дополнительного поджатия подвижного контакта камеры установлена пружина 8. Привод и отключающая пружина б воздействуют на подвижный контакт через траверсу 7. Питание электропривода может осуществляться как переменным, так и постоянным током.

Контактор электромагнитный типа К2-6. Контактор выполняется на Iном =6 кВ, частоту 50 и 60 Гц; Iном=40...400 А (пять величин); Iоткл = 1,5...4,2 кА;

Iвкл=4...8 кА; Iтерм=2...4,2 кА (4 с); имеет износостойкость механическую 1-106 циклов, коммутационную 1-105 циклов; частоту включений 300 вкл/ч.

Контактор (рис. 2-7) состоит из трех полюсов 3 (на рисунке камера среднего полюса снята), установленных на четырех изоляционных рейках 2. Рейки стягивают стальные щеки 1, между которыми расположены полюсы, электромагнитный привод 4 и контакты вспомогательной цепи 5.

 

Рис. 2-6. Контактор вакуумный на напряжение 10кВ.

Рис. 2-7. Контактор электромагнитный на напряжение 6кВ.

Каждый полюс контактора состоит из системы неподвижного контакта, которая содержит катушку магнитного дутья с сердечником и магнитопроводами и саму неподвижную контакт-деталь; системы подвижного контакта, установленной на подвижном изоляционном валу б и связанной с выводом полюса гибкой связью; камеры дугогашения, состоящей из набора керамических плиток и керамических щек, заключенных в каркас из пластмассовых деталей.

Электромагнитный привод включает в себя сердечник, катушку и якорь, который поворачивается в подшипниках на оси и связан системой рычагов с поворотным валом 6. Вспомогательные контакты собраны в блок и имеют привод от того же вала.

Реверсор типа Р-6. Реверсор состоит из трех контакторов, соединенных по определенной схеме и смонтированных в одном шкафу.

 

ГЛАВА 3

 

Токоограничивающие реакторы. Разрядники

 

3-1. ТОКООГРАНИЧИВАЮЩИЕ РЕАКТОРЫ

 

Автоматические выключатели, осуществляя отключение цепей при коротких замыканиях, не защищают эти цепи от разрушающего действия электродинамических сил. В современных мощных сетях токи короткого замыкания, а следовательно, и электродинамические силы бывают настолько велики, что часто не представляется возможным выполнить установки с требуемой электродинамической и термической стойкостью. С целью ограничения ударного тока короткого замыкания (КЗ) в мощных сетях применяются Токоограничивающие реакторы, которые устанавливаются на отходящих фидерах (1 и 2) (рис. 3-1) и между секциями сборных шин (3). Кроме ограничения тока КЗ реакторы одновременно во время короткого замыкания поддерживают напряжение на питающих шинах на некотором определенном уровне.

Реактор представляет собой катушку с постоянным индуктивным сопротивлением х = ωL. Одним из основных параметров является его индуктивное сопротивление Хр, равное отношению падения напряжения на реакторе Uр при протекании по нему номинального тока к фазному напряжению Uф. Индуктивное сопротивление выражается в процентах. Если пренебречь омическим сопротивлением реактора, то

Индуктивное сопротивление фидерных реакторов выбирается обычно 6 — 8 %, а секционных 8-12%.

 

 

Рис. 3-1. Схема включения токоограничивающих реакторов: а – одинарных; б – сдвоенных.

1 – фидерный; 2 – фидерный групповой; 3 – межсекционный; 4 – сдвоенный.

 

Следует отметить, что при номинальном режиме потери напряжения на реакторе ∆Uф не равны численно падению напряжения Up на нем (рис. 3 -2, а и б) и существенно зависят от величины cosφ(∆Uф → 0 при cosφ =1; ∆Uф = Uр при cosφ = 0; ∆Uф ≈0,5Uр при cosφ = 0,8). Таким образом, при номинальном режиме обеспечивается допустимое (3—4%) отклонение напряжения у потребителей. При коротком замыкании cosφ>0 и большая часть напряжения приходится на реактор (рис. 3-2,6), вследствие чего на сборных шинах поддерживается сравнительно высокое остаточное напряжение, значение которого зависит от соотношения сопротивлений сети до реактора и самого реактора. Если пренебречь активным сопротивлением сети и реактора, то кратность установившегося тока короткого замыкания будет

Ударный ток короткого замыкания при расчете реакторов берется равным

Для поддержания постоянства индуктивного сопротивления токоограничивающие реакторы выполняются без стальных сердечников. При этом они получаются больших размеров и массы. Реакторы со стальными сердечниками при равной индуктивности имели бы меньшие размеры. Однако у них при больших токах сердечники насыщаются, индуктивное сопротивление таких реакторов резко снижается и реакторы теряют свои токоограничивающие свойства как раз в тот момент, когда они необходимы. Ввиду этого реакторы со стальными сердечниками не получили распространения.

Индуктивность L реакторов может быть рассчитана по следующим формулам (размеры даны в сантиметрах, L — в миллигенри):

1) для реактора с соотношением геометрических размеров подобно рис. 3-3, а и числом витков w

где α = 3/4 при 0,3 ≤ D/[2(h+b)]≤1 и α = 1/2 при 1 ≤ D/[2(h+b)]≤3;

2) для реактора, у которого h/D >> b/D (рис. 3-3, б)

где к1 = f(h/D) (кривая на рис. 3-3);

3) для реактора, у которого b/D >> h/D (рис. 3-3, в)

где к2 = f(b/D) (кривая на рис. 3-3);

 

Рис. 3-2. Распределение напряжений в цепи с сектором:

а – при номинальном токе; б – при коротком замыкании

 

Получили распространение сдвоенные реакторы 4 (см. рис. 3-1,6). Такой реактор питает два фидера. Катушки каждой фазы включены так, что создаваемые ими потоки направлены встречно. При номинальном токе индуктивность (следовательно, и потери напряжения) каждой из катушек снижается из-за размагничивающего действия другой. При равных токах и коэффициенте связи, стремящемся к единице, индуктивность реактора стремилась бы к нулю. Обычно коэффициент связи равен 0,4—0,6. Соответственно уменьшаются и потери напряжения. При коротком замыкании на одном из фидеров размагничивающим действием катушки другого фидера, обтекаемой номинальным током, можно пренебречь. Индуктивность и токоограничивающее действие сдвоенного реактора получаются такими же, как у одинарного.

На напряжения до 35 кВ и для внутренней установки почти исключительное распространение получили бетонные реакторы. Бетонный реактор (рис. 3-4, а) выполняется в виде концентрически расположенных витков 1 из специального круглого изолированного многожильного провода, залитых в радиально расположенные бетонные колонки 2. Благодаря своей эластичности провод демпфирует термические и динамические усилия и тем самым частично снимает напряжения с бетона. Обмотки реактора на большие токи выполняются из нескольких параллельных проводов с транспозицией этих параллелей, обеспечивающей равномерное распределение токов.

 

Рис. 3-3. К расчету индуктивности реактора.

Рис. 3-4. Общий вид фазы бетонного реактора (а) и трехфазный комплект реактора (б).

Рис. 3-5. Общий вид фазы масляного реактора.

 

Число колонок определяется диаметром намотки. Основная изоляция реактора — бетон, который проходит специальный технологический режим и выпускается с высокими механическими свойствами. Весь реактор после изготовления подвергается сушке, пропитке и покрытию влагостойкими лаками. Каждая колонка реактора устанавливается на опорные изоляторы 3, которые обеспечивают изоляцию от земли и между фазами. Фазы могут быть расположены вертикально (рис. 3-4,6), а также горизонтально или ступенчато. Все металлические детали реактора выполняются из немагнитных материалов. При больших токах применяется искусственное охлаждение.

На напряжения свыше 35 кВ и для наружной установки используются масляные реакторы (рис. 3-5). Обмотки 3 из медных проводников, изолированных кабельной бумагой, укладываются на изоляционные цилиндры 4 и размещаются в баках (баке) 2, заливаемых маслом. Концы обмотки каждой фазы выводятся через проходные изоляторы 1 наружу. Масло служит и как изолирующая, и как охлаждающая среда.

Переменное поле катушек реактора, замыкающееся через стенки бака, может привести к чрезмерному нагреву этих стенок. Для снижения нагрева стенок (и масла) необходимо ограничить замыкающийся через них магнитный поток. Для этого служат электромагнитные экраны 5 или магнитные шунты. Электромагнитный экран представляет собой медные (алюминиевые) короткозамкнутые витки, расположенные концентрично относительно обмотки реактора у стенок бака. Индуцируемые в витках токи создают в стенках бака поле, направленное встречно основному, и почти полностью его компенсируют. Нагрев стенок снижается. Магнитный шунт представляет собой пакеты листовой стали, укрепленные около стенок бака с внутренней его стороны и создающие искусственный магнитопровод с магнитным сопротивлением, значительно меньшим сопротивления стенок бака. Магнитный поток реактора замыкается по магнитному шунту, а не через стенки.

 

3-2. РАЗРЯДНИКИ

 

При коммутациях, а также вследствие атмосферных разрядов в электротехнических установках часто возникают импульсы напряжения - перенапряжения, существенно превышающие номинальное. Электрическая изоляция оборудования не должна повреждаться при этом и выбирается с соответствующим запасом. Однако возникающие перенапряжения зачастую превосходят этот запас, и изоляция тогда повреждается — пробивается, что может привести к тяжелым авариям. Для ограничения возникающих перенапряжений, а следовательно, и снижения требований к уровню электрической изоляции (снижения стоимости оборудования) применяются разрядники.

Разрядник — это электрический аппарат, искровой промежуток которого пробивается при определенном значении приложенного напряжения, ограничивая тем самым перенапряжения в установке.

Разрядник состоит из электродов с искровым промежутком между ними и дугогасительного устройства. Один из электродов присоединяется к защищаемой цепи, другой — заземляется.

Если кривая 1 (рис. 3-6) — номинальное напряжение, а кривая 3 — вольт-секундная характеристика изоляции оборудования (т. е. время, в течение которого изоляция может выдержать данное перенапряжение не повреждаясь), то вольт-секундная характеристика разрядника должна определяться кривой 2. При возникновении перенапряжения (кривая 4) искровой промежуток разрядника пробивается раньше (точка О), чем изоляция оборудования. После пробоя линия (сеть) заземляется через сопротивление разрядника или накоротко. При этом напряжение на линии определяется значением тока через разрядник, сопротивлением разрядника и заземления.

Падение напряжения на разряднике при протекании импульсного тока данного значения и формы называется остающимся напряжением. Чем меньше это напряжение, тем лучше качество разрядника.

После пробоя разрядника от импульса напряжения его искровой промежуток ионизирован и легко пробивается фазным напряжением. Возникает короткое замыкание на землю, и через разрядник протекает ток промышленной частоты, который называется сопровождающим. Чтобы избежать срабатывания защиты и отключения оборудования, разрядник должен отключить сопровождающий ток в возможно малое время (примерно в полупериод промышленной частоты).

 

 

Рис. 3-6. Вольт-секундные характеристики.

 

К разрядникам предъявляются следующие требования:

1. Вольт-секундная характеристика разрядника должна быть ниже, чем у защищаемого объекта.

2. Искровой промежуток разрядника должен иметь определенную гарантированную электрическую прочность при промышленной частоте.

3. Остающееся напряжение на разряднике, и характеризующее его ограничивающую способность, не должно превышать значений, которые опасны для изоляции оборудования.

4. Сопровождающий ток должен отключаться на малое время.

5. Разрядник должен допускать большое число срабатываний без осмотра и ремонта.

Трубчатые разрядники. Разрядник (рис. 3-7) представляет собой дугогасительную трубку 3 из полихлорвинила марки «винипласт», на концах которой закреплены металлические наконечники: верхний, закрытый, 2 и нижний, открытый, 7. Внутри трубки помещается стержневой электрод 4, который крепится в хвостовике 9 верхнего наконечника. Вторым электродом внутреннего искрового промежутка служит шайба б, закрепленная в нижнем наконечнике. При помощи хомутов 5 нижний наконечник (разрядник) крепится к заземленной конструкции. К нижнему же наконечнику крепится ленточный указатель срабатывания 8, свободный конец которого изгибается и заводится внутрь наконечника. При срабатывании разрядника конец указателя выбрасывается газовым дутьем, и лента выпрямляется.

 

Рис. 3-7. Общий вид трубчатого разрядника.

 

С целью разгрузки изоляционного материала разрядника от электрического поля при номинальном режиме разрядник отделяется от линии наружным (lнар) искровым промежутком, для регулирования которого служит удлинитель (рог) 1.

При возникновении перенапряжения пробиваются оба промежутка (lвн и lнар). Возникающая в трубке дуга вызывает сильную газогенерацию из стенок трубки. Газы устремляются через выхлопное отверстие в шайбе б и открытый наконечник, образуя интенсивное продольное дутье, которое гасит дугу при прохождении тока через нуль, одновременно гаснет дуга и на промежутке lнар. Отключение сопровождается большим выбросом пламени и газов (при U = 35 кВ А = 3 м, В = 1,5 м). В объеме, занимаемом пламенем и газами, не должны располагаться какие-либо токоведущие части. Предельный отключаемый ток определяется прочностью трубки и, например, для разрядников серии РТВ на 6-35 кВ составляет 12 кА. Предельные токи отключения разрядников с фибробакелитовыми трубками меньше, чем у разрядников с винипластовыми трубками.

Вентильные разрядники. Вентильный разрядник (рис. 3-8, а) состоит из



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2022-10-12 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: