Метод эквивалентных фильтрационных сопротивлений




Практические расчеты по приведенным выше формулам (4.17) и (4.20) могут быть значительно упрощены, если использовать так называемый метод эквивалентных фильтрационных сопротивлений, предложенный Ю.П. Борисовым. Сущность метода состоит в замене полного фильтрационного сопротивления реального потока жидкости сложной конфигурации несколькими эквивалентными (равнозначными) последовательными или параллельными фильтрационными сопротивлениями простейших потоков (прямолинейно-параллельных и плоскорадиальных).

В основу метода ЭФС принят принцип электрогидродинамической аналогии (ЭГДА), согласно которому сила тока I соответствует расходу жидкости (дебиту Q), разность напряжений DU - разности давлений (депрессии DР), электрическое сопротивление проводника RЭЛ - фильтрационному сопротивлению пласта RФ. Принцип ЭГДА легко доказывается из сопоставления закона Ома (I=DU/R) с выражениями дебитов прямолинейной галереи (3.15) и одиночной скважины (3.27), определяемых по закону Дарси:

 

; (4.22)

 

, (4.23)

 

где - фильтрационное сопротивление в полосообразном пласте (рис.6);

- фильтрационное сопротивление в круговом пласте (рис.9).

 

Аналогично выражениям (4.22) и (4.23) преобразуем расчетные формулы (4.17) и (4.20).

Дебит одной скважины в прямолинейной бесконечной батарее скважин (рис. 24) можно записать

 

, (4.24)

где ; .

 

Первое слагаемое re в знаменателе (4.24), как нетрудно заметить из сопоставления с формулой (4.22), равно фильтрационному сопротивлению в полосообразном пласте на участке длиной L от контура пласта до галереи. Площадь поперечного сечения пласта, приходящегося на данную скважину из ряда, равна произведению толщины пласта h =1 на ширину 2s, равную расстоянию между скважинами.

Второе слагаемое ri равно фильтрационному сопротивлению в круговом пласте (4.23) с радиусом контура питания RK = s/p.

Таким образом, сложный фильтрационный поток можно разбить на два простейших: прямолинейно-параллельный поток от контура пласта до галереи (прямолинейной цепочке скважин) и плоскорадиальный поток внутри галереи в круговом пласте с длиной контура 2pRK =2s, т.е. RK = s/p. Величину re принято называть внешним фильтрационным сопротивлением (на внешнем пути от контура до галереи), а ri – внутренним фильтрационным сопротивлением (внутри галереи), которое учитывает увеличение сопротивления притоку жидкости в скважину по сравнению с галереей длиной 2s. Сумма сопротивлений в (4.24) указывает на их последовательное соединение (рис.27).

 
 

 
 
Рис. 27

 


Дебит одной скважины в кольцевой батарее (рис.26) можно записать

 

, (4.25)

 

где ,

 

.

 

Первое слагаемое rе в знаменателе выражения (4.25) представляет собой внешнее фильтрационное сопротивление части кругового пласта (сектора с углом a = 2s/R1 радиан) от контура до круговой галереи длиной 2s и радиусом R1 (рис.26), а второе слагаемое ri - внутреннее фильтрационное сопротивление притоку к скважине внутри галереи в круговом пласте с длиной контура 2pRK = 2s, т.е. RK = s/p. В данном случае сложный поток к одной скважине круговой батареи можно разбить на плоско-радиальный поток от контура питания до круговой галереи и плоско-радиальный поток к скважине внутри галереи.

Найдем суммарный дебит всей прямолинейной батареи скважин (рис.24)

 

, (4.26)

 

или

,

 

 

где ; В=2sn – длина галереи.

–представляет собой внешнее суммарное фильтрационное сопротивление потоку жидкости от контура питания до галереи длиной В=2sn, расположенной на расстоянии L от контура питания.

;

– выражает внутреннее суммарное фильтрационное сопротивление, возникающее при подходе жидкости к скважине в зоне радиуса r=s/p, где фильтрация практически плоско-радиальная.

Найдем суммарный дебит для круговой батареи скважин (рис. 26).

 

, (4.27)

или

,

где

- внешнее суммарное фильтрационное сопротивление;

- внутреннее суммарное фильтрационное сопротивление.

Из расчетных формул (4.26) и (4.27) следует, что приток жидкости ко всем скважинам можно рассматривать как параллельное соединение проводников с одинаковыми сопротивлениями (). Таким образом, фильтрационный поток к скважинам можно представить эквивалентной схемой электрических сопротивлений и для расчета использовать законы Ома и Кирхгофа (первый и второй законы), подразумевая в соответствии с принципом ЭГДА под силой тока, разностью напряжений и электрическими сопротивлениями их аналоги – расход жидкости, перепад давлений, фильтрационные сопротивления.

 
 

Применительно к многорядной системе скважин пласт также представляется простой геометрической формой – прямолинейной или круговой. Реальный поток между скважинами соседних рядов заменяется фильтрацией между «проницаемыми» галереями с внутренними фильтрационными сопротивлениями скважин внутри галерей, дополняющими внешние фильтрационные сопротивления между галереями. Тогда представляя фильтрационную схему пласта эквивалентной ей электрической схемой сопротивлений и применяя к последней законы Ома и Кирхгофа, составляют уравнения интерференции рядов скважин для расчета дебитов или забойных давлений.

Схема эквивалентного фильтрационного сопротивления для полосообразной залежи

 

; ; ; и т.д.

; ; .


Схема эквивалентного фильтрационного сопротивления для круговой залежи.

 

; и т.д.

 

; и т.д.



Поделиться:




Поиск по сайту

©2015-2025 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-01-11 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: