Виды выпрямителей и их характеристики




Лекция №16. Электронные выпрямители

Цель: ознакомиться с устройством, принципом действия, характеристиками и основными схемами выпрямителей

Виды выпрямителей и их характеристики

Выпрямителем называется устройство, предназначенное для преобразования переменного напряжения в постоянное. Основное назначение выпрямителя заключается в сохранении направления тока в нагрузке при изменении полярности приложенного напряжения. Обобщенная структурная схема выпрямителя приведена на рисунке.

В состав выпрямителя могут входить: силовой трансформатор, вентильный блок, фильтрующее устройство и стабилизатор напряжения.

Трансформатор выполняет следующие функции: преобразует значение напряжения сети, обеспечивает гальваническую изоляцию нагрузки от силовой сети, преобразует количество фаз силовой сети. В импульсных источниках питания трансформатор обычно отсутствует, так как его функции выполняет высокочастотный инвертор.

Вентильный блок является основным звеном выпрямителя, обеспечивая однонаправленное протекание тока в нагрузке. В качестве вентилей могут использоваться электровакуумные, газоразрядные или полупроводниковые приборы, обладающие односторонней электропроводностью, например, диоды, тиристоры, транзисторы и др. Идеальные вентильные элементы должны пропускать ток только в одном (прямом) направлении и совсем не пропускать его в другом (обратном) направлении. Реальные вентильные элементы отличаются от идеальных прежде всего тем, что они пропускают некоторый ток в обратном направлении и имеют падение напряжения при протекании прямого тока. Это сказывается на снижении КПД вентильного блока и снижении эффективности выпрямителя в целом.

Фильтрующее устройство используется для ослабления пульсаций выходного напряжения. В качестве фильтрующего устройства обычно используются фильтры нижних частот (ФНЧ), выполненные на пассивных R, L, С элементах или, иногда, с применением активных элементов – транзисторов, операционных усилителей и пр. Качество фильтрующего устройства оценивают по его способности увеличивать коэффициент фильтрации, равный отношению коэффициентов пульсации на входе и выходе фильтра.

Стабилизатор напряжения предназначен для уменьшения влияния внешних воздействий: изменения напряжения питающей сети, температуры окружающей среды, изменения нагрузки и др., – на выходное напряжение выпрямителя. Стабилизатор напряжения можно установить не только на выходе выпрямителя, но и на его входе. Если к стабильности выходного напряжения не предъявляется особых требований, то стабилизатор может быть или совсем исключен или его функции переданы другим узлам. Например, в импульсных источниках питания функции стабилизатора может выполнять регулируемый инвертор или регулируемый вентильный блок.

Кроме основных узлов, в состав выпрямителя могут входить различные вспомогательные элементы и узлы, предназначенные для повышения его надежности: узлы контроля и автоматики, узлы защиты и др., например, узлы автоматического переключения напряжения питающей сети 110-220 В.

Выпрямители имеют следующие основные параметры:

а) среднее значение выходного напряжения

,

где Т – период напряжения сети (для промышленной сети – 20 мс);

б) среднее значение выходного тока iвых

.

в) коэффициент пульсаций выходного напряжения

,

где Um – амплитуда низшей (основной) гармоники выходного напряжения.

Указанные параметры являются наиболее важными при использовании выпрямителя.

При проектировании выпрямителя широко применяются также следующие параметры, характеризующие его внутренние особенности:

а) действующее значение Uвх входного напряжения выпрямителя;

б) максимальное обратное напряжение Uo6p.макс на отдельном диоде (вентиле). Это напряжение принято выражать через напряжение Ucp;

в) среднее значение Iд.ср тока отдельного вентиля;

г) максимальное (амплитудное) значение Iд.макс тока отдельного вентиля.

Токи Iд.ср и Iд.макс принято выражать через Iср. Значение Uo6p.макс используется для выбора вентиля по напряжению. Значения Iд.ср и Iд.макс используются для выбора вентиля по току. Здесь следует иметь в виду, что вследствие малой тепловой инерционности полупроводникового вентиля он может выйти из строя даже в том случае, когда его средний ток Iд.ср мал, но велик максимальный ток Iд.макс.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2022-06-20 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: