Газоанализаторы, основанные на поглощении инфракрасных лучей, получили широкое применение в различных отраслях промышленности и применяются для определения концентрации окиси углерода (СО), двуокиси углерода (С02), метана (СН4), аммиака в сложных газовых смесях, а также и других газов. Это объясняется тем, что в инфракрасной области спектра газы имеют весьма интенсивные и отличительные друг от друга по положению в спектре полосы поглощения.
Газоанализаторы, основанные на поглощении ультрафиолетовых лучей, применяются в химической, нефтяной и пищевой промышленности. Благодаря высокой чувствительности они широко используются для определения токсических и взрывоопасных концентраций различных газов в воздухе промышленных предприятий. Газоанализаторы этого типа позволяют определять содержание паров ртути, хлора и других газов и паров как в воздушной среде, так и в технологических газовых смесях.
Известно, что способностью поглощать инфракрасные лучи обладают все газы, которые содержат в молекуле два и более различных атомов, например окись углерода (СО),двуокись углерода (СО2), метан (СН4). Способность к поглощению инфракрасных лучей не проявляется у таких газов, как кислород, азот, водород, одноатомные газы—гелий,неон, аргон, криптон, ксенон, радон, которые имеют один тип атомов. Основным законом, определяющим интенсивность монохроматического излучения, прошедшего известную толщину поглощающего слоя газа является закон Ламберта—Бера.
Известно, что каждый газ поглощает инфракрасное излучение в свойственных ему участках спектра. Это различие спектров поглощения в инфракрасной области в большинстве случаев позволяет вести избирательный анализ данного компонента в сложной газовой смеси при переменной концентрации неопределяемых компонентов.
|
В зависимости от принципа действия лучеприемника газоанализатора, а вместе с тем и характера реакции его на поток инфракрасного излучения (селективного и неселективного) существующие газоанализаторы этого типа делятся на несколько групп и имеют различные наименования. Наибольшее распространение имеют газоанализаторы, в которых используется селективный оптико-акустический лучеприемник.
На рисунке 5, а схематично показан оптико-акустический лучеприемник 1, в котором находится газ, способный поглощать инфракрасные лучи. Окно 2 этого лучеприемника выполнено из материала, пропускающего инфракрасное излучение. Через это окно поступает поток инфракрасного излучения от источника «3, прерываемый с определенной частотой обтюратором 4, приводимым в действие синхронным двигателем 5. Вследствие этого газ будет периодически нагреваться за счет поглощения энергии и охлаждаться и в замкнутом объеме лучеприемника возникнут периодические колебания температуры, вызывающие периодические колебания давления газа. Колебания давления могут быть преобразованы конденсаторным микрофеном 6 в электрический выходной сигнал, который можно измерить.
Рисунок 5 – Схема оптико-акустического лучеприемника
Необходимо отметить, что наличие в анализируемой сложной газовой смеси неопределяемых компонентов, спектры поглощения которых могут частично перекрывать спектр поглощения определяемого компонента (например, наличие СО и СН4 при определении С02 в газовой смеси), приведет к увеличению погрешности измерения. Это обусловливается тем, что в данном случае степень ослабления потока инфракрасного излучения в рабочей камере будет определяться и концентрацией мешающих неопределяемых компонентов. Значение погрешности измерения будет зависеть от соотношения удельных коэффициентов (показателей) поглощения определяемого и неопределяемого компонентов, от выбранной схемы и конструкции газоанализатора, а также от концентрации неопределяемого мешающего компонента. Для уменьшения влияния неопределяемых компонентов на точность измерения в оптическом канале газоанализатора устанавливают фильтровую камеру, наполняемую неопределяемыми мешающими компонентами в смеси с газом, не поглощающим инфракрасное излучение в требуемой пропорции.
|
Для повышения точности измерения в большинстве отечественных и зарубежных газоанализаторов применяют двухканальную дифференциальную оптическую схему.