Установление истинности сложных высказываний.




Свойства

Рассмотрим несколько свойств декартова произведения:

1. Если A, B — конечные множества, то A × B — конечное. И наоборот, если одно из множеств-сомножителей бесконечное, то и результат их произведения — бесконечное множество.

2. Количество элементов в декартовом произведении равно произведению чисел элементов множеств-сомножителей (в случае их конечности, разумеется): | A × B |=| A |⋅| B |.

3. A np ≠(A n) p — в первом случае целесообразно рассмотреть результат декартова произведения как матрицу размеров 1× np, во втором же — как матрицу размеров n × p.

4. Коммутативный закон не выполняется, т.к. пары элементов результата декартова произведения упорядочены: A × BB × A.

5. Ассоциативный закон не выполняется: (A × BCA ×(B × C).

6. Имеет место дистрибутивность относительно основных операциях на множествах: (ABC =(A × C)∗(B × C),∗∈{∩,∪,∖}

 

11. Понятие высказывания. Элементарные и составные высказывания.

Высказывание - это утверждение или повествовательное предложение, о котором можно сказать, что оно истинно (И-1) или ложно (Л-0), но не то и другое одновременно.

Например, «Сегодня идет дождь», «Иванов выполнил лабораторную работу №2 по физике».

Если у нас имеется несколько исходных высказываний, то из них при помощи логических союзов или частиц мы можем образовывать новые высказывания, истинностное значение которых зависит только от истинностных значений исходных высказываний и от конкретных союзов и частиц, которые участвуют в построении нового высказывания. Слова и выражения «и», «или», «не», «если..., то», «поэтому», «тогда и только тогда» являются примерами таких союзов. Исходные высказывания называются простыми, а построенные из них с помощью тех или иных логических союзов новые высказывания - составными. Разумеется, слово «простые» никак не связано с сутью или структурой исходных высказываний, которые сами могут быть весьма сложными. В данном контексте слово «простой» является синонимом слова «исход-ный». Важно то, что значения истинности простых высказываний предполагаются известными или заданными; в любом случае они никак не обсуждаются.

Хотя высказывание типа «Сегодня не четверг» не составлено из двух различных простых высказываний, для единообразия конструкции оно также рассматривается как составное, по-скольку его истинностное значение определяется истинностным значением другого высказыва-ния «Сегодня четверг»

Пример 2. Cледующие высказывания рассматриваются как составные:

Я читаю «Московский комсомолец» и я читаю «Коммерсант».

Если он сказал это, значит, это верно.

Солнце не является звездой.

Если будет солнечно и температура превысит 250, я приеду поездом или автомобилем

Простые высказывания, входящие в составные, сами по себе могут быть совершенно произвольными. В частности, они сами могут быть составными. Описываемые ниже базисные типы составных высказываний определяются независимо от образующих их простых высказываний.

 

12. Операции над высказываниями.

1. Операция отрицания.

Отрицанием высказывания А называется высказывание, обозначаемое ( читается «не А », «неверно, что А »), которое истинно, когда А ложно и ложно, когда А – истинно.

Отрицающие друг друга высказывания А и называются противоположными.

2. Операция конъюнкции.

Конъюнкцией высказываний А и В называется высказывание, обозначаемое А В (читается «А и В »), истинные значения которого определяются в том и только том случае, когда оба высказывания А и В истинны.

Конъюнкцию высказываний называют логическим произведением и часто обозначают АВ.

Пусть дано высказывание А – «в марте температура воздуха от 0 С до + 7 С » и высказывание В – «в Витебске идет дождь». Тогда А В будет следующей: «в марте температура воздуха от 0 С до + 7 С и в Витебске идет дождь». Данная конъюнкция будет истинной, если будут высказывания А и В истинными. Если же окажется, что температура была меньше 0 С или в Витебске не было дождя, то А В будет ложной.

3. Операция дизъюнкции.

Дизъюнкцией высказываний А и В называется высказывание А В (А или В), которое истинно тогда и только тогда, когда хотя бы одно из высказываний истинно и ложно – когда оба высказывания ложны.

Дизъюнкцию высказываний называют также логической суммой А+В.

Высказывание «4<5 или 4=5 » является истинным. Так как высказывание «4<5 » – истинное, а высказывание «4=5 » – ложное, то А В представляет собой истинное высказывание «4 5 ».

4. Операция импликации.

Импликацией высказываний А и В называется высказывание А В («если А, то В », «из А следует В »), значение которого ложно тогда и только тогда, когда А истинно, а В ложно.

В импликации А В высказывание А называют основанием, или посылкой, а высказывание Вследствием, или заключением.

 

13. Таблицы истинности высказываний.

Таблица истинности - это таблица, устанавливающая соответствие между всеми возможными наборами логических переменных, входящих в логическую функцию и значениями функции.

Таблицы истинности применяются для:

- вычисления истинности сложных высказываний;

- установления эквивалентности высказываний;

- определения тавтологий.

Установление истинности сложных высказываний.

Пример 1. Установить истинность высказывания · С

Решение. В состав сложного высказывания входят 3 простых высказывания: А, В, С. В таблице заполняются колонки значениями (0, 1). Указываются все возможные ситуации. Простые высказывания от сложных отделяются двойной вертикальной чертой.
При составлении таблицы надо следить за тем, чтобы не перепутать порядок действий; заполняя столбцы, следует двигаться “изнутри наружу”, т.е. от элементарных формул к более и более сложным; столбец, заполняемый последним, содержит значения исходной формулы.

А В С А+ · С
             
             
             
             
             
             
             
             

Из таблицы видно, что данное высказывание истинно только в случае, когда А=0, В=1, С=1. Во всех остальных случаях оно ложно.

 

14. Равносильные формулы.

 

Две формулы А и В называются равносильными, если они принимают одинаковые логические значения при любом наборе значений входящих в формулу элементарных высказываний.

Равносильность обозначается знаком « ». Для преобразования формул в равносильные важную роль играют основные равносильности, выражающие одни логические операции через другие, равносильности, выражающие основные законы алгебры логики.

Для любых формул А, В, С справедливы равносильности.

I. Основные равносильности

закон идемпотентности

1-истина

0-ложь

закон противоречия

закон исключенного третьего

закон поглощения

формулы расщепления

закон склеивания

II. Равносильности, выражающие одни логические операции через другие.

закон де Моргана

III. Равносильности, выражающие основные законы алгебры логики.

коммутативный закон

ассоциативный закон

дистрибутивный закон

 

15. Формулы логики высказываний.

Виды формул классической логики высказываний – в логике высказываний различают следующие виды формул:

1. Законы (тождественно-истинные формулы) – формулы, которые при любых интерпретациях пропозициональных переменных принимают значение «истинно»;

2. Противоречия (тождественно-ложные формулы) – формулы, которые при любых интерпретациях пропозициональных переменных принимают значение «ложно»;

3. Выполнимые формулы – такие, которые принимают значение «истинно» хотя бы при одном наборе значений истинности входящих в их состав пропозициональных переменных.

Основные законы классической логики высказываний:

1. Закон тождества: ;

2. Закон противоречия: ;

3. Закон исключенного третьего: ;

4. Законы коммутативности и : , ;

5. Законы дистрибутивности относительно ,и наоборот: , ;

6. Закон удаления истинного члена конъюнкции: ;

7. Закон удаления ложного члена дизъюнкции: ;

8. Закон контрапозиции: ;

9. Законы взаимовыразимости пропозициональных связок: , , , , , .

Процедура разрешимости – метод, позволяющий для каждой формулы установить является она законом, противоречием или выполнимой формулой. Самой распространенной процедурой разрешимости является метод истинностных таблиц. Однако он не единственный. Эффективным методом разрешимости является метод нормальных форм для формул логики высказываний. Нормальной формой формулы логики высказываний является форма, не содержащая знака импликации « ». Различают конъюнктивную и дизъюнктивную нормальные формы. Конъюнктивная форма содержит только знаки конъюнкции « ». Если в формуле, приведенной к конъюнктивной нормальной форме, встречается подформула вида , то вся формула в этом случае является противоречием. Дизъюнктивная форма содержит только знаки дизъюнкции « ». Если в формуле, приведенной к дизъюнктивной нормальной форме, встречается подформула вида , то вся формула в этом случае является законом. Во всех остальных случаях формула является выполнимой формулой.

 

16. Предикаты и операции над ними. Кванторы.

Предложение, содержащее одну или несколько переменных и которое при конкретных значениях переменных является высказыванием, называется высказывательной формой или предикатом.

В зависимости от числа переменных, входящих в предложение, различают одноместные, двухместные, трехместные и т.д. предикаты, обозначаемые соответственно: А(х), В(х, у), С(х, у, z).

Если задан некоторый предикат, то с ним связаны два множества:

1. Множество (область) определения Х, состоящее из всех значений переменных, при подстановке которых в предикат последний обращается в высказывание. При задании предиката обычно указывают его область определения.

2. Множество истинности Т, состоящее из всех тех значений переменных, при подстановке которых в предикат получается истинное высказывание.

Множество истинности предиката всегда является подмножеством его области определения, то есть .

Над предикатами можно совершать те же операции, что и над высказываниями.

1. Отрицанием предиката А(х), заданного на множестве Х, называется предикат , истинный при тех значениях , при которых предикат А(х) обращается в ложное высказывание, и наоборот.

Из данного определения следует, что предикаты А(х) и В(х) не являются отрицаниями друг друга, если найдется хотя бы одно значение , при котором предикаты А(х) и В(х) обращаются в высказывания с одинаковыми значениями истинности.

Множество истинности предиката является дополнением к множеству истинности предиката А(х). Обозначим через ТА множество истинности предиката А(х), а через Т - множество истинности предиката . Тогда .

2. Конъюнкцией предикатов А(х) и В(х), заданных на множестве Х, называется предикат А(х) В(х), обращающийся в истинное высказывание при тех и только тех значениях х Х, при которых оба предиката обращаются в истинные высказывания.

Множество истинности конъюнкции предикатов есть пересечение множеств истинности предиката А(х) В(х). Если обозначить множество истинности предиката А(х) через ТА, а множество истинности предиката В(х) через ТВ и множество истинности предиката А(х) В(х) через , то

 

3. Дизъюнкцией предикатов А(х) и В(х), заданных на множестве Х, называется предикат А(х) В(х), обращающийся в истинное высказывание при тех и только тех значениях х Х, при которых хотя бы один из предикатов обратился в истинное высказывание.

Множество истинности дизъюнкции предикатов есть объединение множеств истинности образующих ее предикатов, т.е. .

4. Импликацией предикатов А(х) и В(х), заданных на множестве Х, называется предикат А(х) В(х), который ложен при тех и только тех значениях переменной, при которых первый предикат обращается в истинное высказывание, а второй – в ложное.

Множество истинности импликации предикатов есть объединение множества истинности предиката В(х) с дополнением к множеству истинности предиката А(х), т.е.

5. Эквиваленцией предикатов А(х) и В(х), заданных на множестве Х, называется предикат , который обращается в истинное высказывание при всех тех и только тех значениях переменной, при которых оба предиката обращаются либо в истинные высказывания, либо в ложные высказывания.

Множество истинности эквиваленции предикатов есть пересечение множества истинности предиката с множеством истинности предиката .

 

Кванторные операции над предикатами

Предикат можно перевести в высказывание способом подстановки и способом «навешивание квантора».

Про числа 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 можно сказать: а) все данные числа простые; б) некоторые из данных чисел четные.

Так как относительно этих предложений можно сказать, что они истинны или ложны, то полученные предложения – высказывания.

Если из предложения «а» убрать слово «все», а из предложения «б» - слово «некоторые», то получим следующие предикаты: «данные числа простые», «данные числа нечетные».

Слова «все» и «некоторые» называются кванторами. Слово «квантор» латинского происхождения и означает «сколько», т. е. квантор показывает, о скольких (всех или некоторых) объектах говорится в том или ином предложении.

Различают два основных вида кванторов: квантор общности и квантор существования.

Термины «всякий», «любой», «каждый» носят названиеквантор всеобщности. Обозначается .

Пусть А(х) – определенный предикат, заданный на множестве Х. Под выражением А(х) будем понимать высказывание истинное, когда А(х) истинно для каждого элемента из множества Х, и ложное в противном случае.

Истинность высказываний с квантором общности устанавливается путем доказательства. Чтобы убедиться в ложности таких высказываний (опровергнуть их), достаточно привести контрпример.

 

17. Определение бинарного отношения между множествами А и В.

Бинарным отношением между множествами A и B называется подмножество R прямого произведения . В том случае, когда можно просто говорить об отношении R на A.

Пример 1. Выпишите упорядоченные пары, принадлежащие бинарным отношениям R1 и R2, заданными на множествах A и : , . Подмножество R1 состоит из пар: . Подмножество .

Область определения R на есть множество всех элементов из A таких, что для некоторых элементов имеем . Иными словами область определения R есть множество всех первых координат упорядоченных пар из R.

Множество значений отношения R на есть множество всех таких, что для некоторых . Другими словами множество значений R есть множество всех вторых координат упорядоченных пар из R.

В примере 1 для R1 область определения: , множество значений - . Для R2 область определения: , множество значений: .

Во многих случаях удобно использовать графическое изображение бинарного отношения. Оно осуществляется двумя способами: с помощью точек на плоскости и с помощью стрелок.

В первом случае выбирают две взаимно перпендикулярные линии в качестве горизонтальной и вертикальной осей. На горизонтальной оси откладывают элементы множества A и через каждую точку проводят вертикальную линию. На вертикальной оси откладывают элементы множества B, через каждую точку проводят горизонтальную линию. Точки пересечения горизонтальных и вертикальных линий изображают элементы прямого произведения

 

18. Способы задания бинарных отношений.

 

Всякое подмножество декартова произведения A×B называется бинарным отношением, определенным на паре множеств A и B (по латыни «бис» обозначает «дважды»). В общем случае по аналогии с бинарными можно рассматривать и n-арные отношения как упорядоченные последовательностиn элементов, взятых по одному из n множеств.

Для обозначения бинарного отношения применяют знак R. Поскольку R— это подмножество множества A×B, то можно записать R⊆A×. Если же требуется указать, что (a, b) ∈ R, т. е. между элементами a ∈ A и b ∈ B существует отношение R, то пишут aRb.

Способы задания бинарных отношений:

1. Это использование правила, согласно которому указываются все элементы, входящие в данное отношение. Вместо правила можно привести список элементов заданного отношения путем непосредственного их перечисления;

2. Табличный, в виде графов и с помощью сечений. Основу табличного способа составляет прямоугольная система координат, где по одной оси откладываются элементы одного множества, по второй — другого. Пересечения координат образуют точки, обозначающие элементы декартова произведения.

На (рисунке 1.16) изображена координатная сетка для множеств. Точкам пересечения трех вертикальных линий с шестью горизонтальными соответствуют элементы множества A×B. Кружочками на сетке отмечены элементы отношения aRb, где a ∈ A и b ∈ B, R обозначает отношение «делит».

Бинарные отношения задаются двухмерными системами координат. Очевидно, что все элементы декартова произведения трех множеств аналогично могут быть представлены в трехмерной системе координат, четырех множеств— в четырехмерной системе и т. д;

3. Способ задания отношений с помощью сечений используется реже, поэтому рассматривать его не будем.

 

19. Рефлексивность бинарного отношения. Пример.

В математике бинарное отношение на множестве называется рефлексивным, если всякий элемент этого множества находится в отношении с самим собой.

Свойство рефлексивности при заданных отношениях матрицей характеризуется тем, что все диагональные элементы матрицы равняются 1; при заданных отношениях графом каждый элемент имеет петлю — дугу (х, х).

Если это условие не выполнено ни для какого элемента множества, то отношение называется антирефлексивным.

Если антирефлексивное отношение задано матрицей, то все диагональные элементы являются нулевыми. При задании такого отношения графом каждая вершина не имеет петли — нет дуг вида (х, х).

Формально антирефлексивность отношения определяется как:.

Если условие рефлексивности выполнено не для всех элементов множества, говорят, что отношение нерефлексивно.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-12 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: