РЕФЕРАТ
по физике на тему:
«ПОЛИМЕРЫ»
Выполнил: ст-т 1 к. ИСиТ
Магомедов Р.М.
Проверил: д.ф.н. Гусейханов М.К.
Махачкала 2018
Содержание:
Особенности…………………………………………………………....3
Получение полимеров…………………………………………………4
Классификация полимеров……………………………………………7
Что такое «Сополимеры»…………………………………………….8
Гетероцепные и моноцепные полимеры……………………………..8
Свойства и важнейшие характеристики полимеров………………..9
Искусственные полимерные материалы…………………………….10
Огнеупорные полимеры……………………………………………...11
Применение полимеров………………………………………………12
Литература…………………………………………………………….14
Полимеры (от греч. polymeres — состоящий из многих частей, многообразный) — это химические соединения с высокой молекулярной массой (от нескольких тысяч до многих миллионов), молекулы которых (макромолекулы) состоят из большого числа повторяющихся группировок (мономерных звеньев). Атомы, входящие в состав макромолекул, соединены друг с другом силами главных и (или) координационных валентностей.
ОСОБЕННОСТИ
Особые механические свойства
эластичность — способность к высоким обратимым деформациям при относительно небольшой нагрузке (каучуки);
малая хрупкость стеклообразных и кристаллических полимеров (пластмассы, органическое стекло);
способность макромолекул к ориентации под действием направленного механического поля (используется при изготовлении волокон и плёнок).
Особенности растворов полимеров:
высокая вязкость раствора при малой концентрации полимера;
растворение полимера происходит через стадию набухания.
|
Особые химические свойства:
способность резко изменять свои физико-механические свойства под действием малых количеств реагента (вулканизация каучука, дубление кож и т. п.).
Особые свойства полимеров объясняются не только большой молекулярной массой, но и тем, что макромолекулы имеют цепное строение и обладают гибкостью.[1]
Получение полимеров.
В настоящее время наряду с природными материалами все большее значение приобретают синтетические полимеры. Выбор соответствующих исходных продуктов и условий процесса позволяет проводить направленный синтез высокомолекулярных соединений и получить их с заранее заданной структурой и необходимым комплексом свойств. При этом можно регулировать степень полимеризации, полидисперсность, разветвленность, конфигурацию звеньев и порядок их присоединения.
Существует два основных метода синтеза полимеров – полимеризация и поликонденсация. Кроме того, в последние годы широко используется возможность изменения свойств полимеров за счёт изменения их молекулярного строения в результате химических реакций – так называемых реакций модификации.
Полимеризацией называют процесс образования макромолекул путём последовательного присоединения молекул мономеров М к активному центру М* растущей макромолекулы. При этом активный центр переходит во вновь присоединившееся звено:
М* + М1®М - М1* М – М1*+ М2®М - М1– М2* М - М1– М2*+ М3®М – М1–М2–М3* и т.д.
Или в общем виде: М1…Мn* + М ® М1…М*n+1
Процесс полимеризации включает следующие основные стадии: образование активных центров, рост цепи, передача цепи, обрыв цепи. Полярность цепи и температура полимеризации оказывают внимание на скорость роста и на природу получаемого полимера.
|
Поликонденсацией называют ступенчатый процесс получения полимеров из би- или полифункциональных соединений, в котором рост макромолекул происходит путём химического взаимодействия функциональных групп молекул мономеров друг с другом и сn– мерами, накапливающимися в ходе реакции, а также молекулn–меров между собой. На концах образующихся макромолекул всегда присутствуют свободные функциональные группы. Каждый акт взаимодействия при поликонденсации сопровождается исчезновением у реагирующих частиц функциональных групп. Часто (но не
всегда) поликонденсация сопровождается выделением низкомолекулярных продуктов реакции. Большую роль в поликонденсации играет соотношение исходных компонентов. Один из надёжных способов регулирования молекулярной массы поликонденсационных полимеров заключается во введении монофункционального компонента, который взаимодействует с функциональными группами, дезактивируя их. Повышение температуры ускоряет поликонденсацию, облегчает удаление образующегося низкомолекулярного продукта, в результате чего реакция смещается в сторону образования более высокомолекулярных соединений. Однако после достижения равновесия молекулярная масса выше при более низкой температуре. Это используется на практике для сокращения продолжительности синтеза полимера: сначала процесс ведут при более высокой температуре, а после достижения равновесия – при более низкой. Молекулярная масса полимера зависит также от способа проведения поликонденсации (в расплаве, в растворе, на поверхности раздела двух фаз, в твёрдой фазе).
|
Физические и фазовые состояния полимеров
Для правильного выбора условий переработки и эксплуатации полимерных материалов необходимо знать в каком фазовом и агрегатном состоянии они находятся.
Полимеры существуют в двух фазовых состояниях: кристаллическом и аморфном. Для них характерны все признаки фазовых состояний низкомолекулярных соединений, но существуют и определённые особенности.
Рис. 3.1. Термомеханическая кривая полимеров
Полимеры существуют в двух агрегатных состояниях: твёрдом и жидком. Твердому агрегатному состоянию соответствуют кристаллическое и аморфное фазовое состояния. Твердые аморфные тела принято называть (по аналогии с низкомолекулярными стёклами) стеклообразными. Жидкое агрегатное состояние полимеров называется вязкотекучим.
Три состояния полимеров: стеклообразное, высокоэластическое и вязкотекучее называются физическими состояниями. Под влиянием внешних воздействий, например, изменении температуры, полимеры легко переходят из одного состояния в другое (рис.3.1). Температура перехода жидкого полимера в твёрдое стеклообразное состояние называется температурой стеклования Тс, а температура, при которой в полимере обнаруживается заметная деформация вязкого течения, называется температурой текучести Тт. Выше Ттполимер находится в вязкотекучем состоянии, ниже Тс– в стеклообразном, а высокоэластическое состояние реализуется в области температур, расположенной между Тси Тт.
Стеклообразное состояние аморфных полимеров – это состояние переохлажденной жидкости. В этом состоянии полимер обладает внешними признаками твердого тела – твердостью, высокой вязкостью, относительно высокими прочностными характеристиками. Тепловое движение элементов структуры заторможено и в отсутствие внешних нагрузок оно ограничено их колебаниями относительно положений равновесия. У полимеров в стеклообразном состоянии отсутствует дальний порядок в расположении атомов и молекул. При комнатной температуре в стеклообразном состоянии находятся широко известные полимеры: полиметилметакрилат или органическое стекло (Тс=105оС), поливинилхлорид (Тс=80оС), полистирол (Тс=100оС). Такие материалы называют пластиками.
Высокоэластическое состояние присуще только полимерам. При температурах, выше Тсзаметно усиливается тепловое движение в полимере, в движении участвуют целые фрагменты макромолекул – сегменты. В этом состоянии находит свое наиболее яркое проявление гибкость молекул – фундаментальное молекулярное свойство полимеров. Отличительной чертой высокоэластического состояния является проявление больших (сотни процентов) обратимых деформаций. Наиболее ярко этот вид деформации наблюдается у каучуков и приготовленных на их основе резин. Материалы, используемые в высокоэластическом состоянии, называются эластомерами.
Полимер называется термопластичным, если при нагревании он переходит из стеклообразного или кристаллического состояния в вязкотекучее, т.е. из твердого в жидкое. При охлаждении происходит обратный переход. Если же при переработке полимер приобретает сетчатое состояние (отверждается), то обратный переход в вязкотекучее состояние не возможен. Такие полимеры называются термореактивными. К их числу относят и синтетические смолы, которые получают из олигомеров, отверждаемых в процессе переработки.
Вязкотекучее состояние используют для формования пластмассовых изделий методами экструзии, литья под давлением, каландрования и др. При этом на формуемость большое влияние оказавает вязкость полимера, которая зависит от природы материала и температуры. Расплавы полимеров - это высоковяхкие жидкости, при этом температурная зависимость вязкости подчиняется экспоненциальному закону:
h =h0exp(E/RT),
где Е-энергия активации вязкого течения, h0-предэкспоненциальный множитель, R-универсальная газовая постоянная, T-абсолютная температура. На практике способность полимера к формованию тем или иным способом определяют по показателю текучести расплава (ПТР) – массе расплава полимера, выдавливаемой из капилляра стандартного размера за 10 минут:
ПТР=600m/t,
где m– масса расплава,t- время выдавливания в секундах. Измеряется ПТР в [г/10мин].[4]
Классификация полимеров
По происхождению полимеры делятся на природные (биополимеры), например белки, нуклеиновые кислоты, смолы природные, и синтетические, например полиэтилен, полипропилен, феноло-формальдегидные смолы.
Атомы или атомные группы могут располагаться в макромолекуле в виде:
- открытой цепи или вытянутой в линию последовательности циклов (линейные полимеры, например каучук натуральный);
- цепи с разветвлением (разветвленные полимеры, например амилопектин);
- трёхмерной сетки (сшитые полимеры, например отверждённые эпоксидные смолы).
Полимеры, молекулы которых состоят из одинаковых мономерных звеньев, называются гомополимерами, например поливинилхлорид, поликапроамид, целлюлоза.[3]
Макромолекулы одного и того же химического состава могут быть построены из звеньев различной пространственной конфигурации. Если макромолекулы состоят из одинаковых стереоизомеров или из различных стереоизомеров, чередующихся в цепи в определённой периодичности, полимеры называются стереорегулярными (см. Стереорегулярные полимеры).[2]
Что такое «Сополимеры»?
Полимеры, макромолекулы которых содержат несколько типов мономерных звеньев, называются сополимерами. Сополимеры, в которых звенья каждого типа образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах макромолекулы, называются блоксополимерами. К внутренним (неконцевым) звеньям макромолекулы одного химического строения могут быть присоединены одна или несколько цепей другого строения. Такие сополимеры называются привитыми (см. также Сополимеры).
Полимеры, в которых каждый или некоторые стереоизомеры звена образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах одной макромолекулы, называются стереоблоксополимерами.[6]
Гетероцепные и гомоцепные полимеры
В зависимости от состава основной (главной) цепи полимеры делят на: гетероцепные, в основной цепи которых содержатся атомы различных элементов, чаще всего углерода, азота, кремния, фосфора, и гомоцепные, основные цепи которых построены из одинаковых атомов. Из гомоцепных полимеров наиболее распространены карбоцепные полимеры, главные цепи которых состоят только из атомов углерода, например полиэтилен, полиметилметакрилат, политетрафторэтилен. Примеры гетероцепных полимеров. — полиэфиры (полиэтилентерефталат, поликарбонаты и др.), полиамиды, мочевино-формальдегидные смолы, белки, некоторые кремнийорганические полимеры. полимеры, макромолекулы которых наряду с углеводородными группами содержат атомы неорганогенных элементов, называются элементоорганическими (см. Элементоорганические полимеры). Отдельную группу полимеров. образуют неорганические полимеры, например пластическая сера, полифосфонитрилхлорид (см. Неорганические полимеры).[7]
Свойства и важнейшие характеристики полимеров
Линейные полимеры обладают специфическим комплексом физико-химических и механических свойств. Важнейшие из этих свойств: способность образовывать высокопрочные анизотропные высокоориентированные волокна и плёнки; способность к большим, длительно развивающимся обратимым деформациям; способность в высокоэластическом состоянии набухать перед растворением; высокая вязкость растворов (см. Растворы полимеров, Набухание). Этот комплекс свойств обусловлен высокой молекулярной массой, цепным строением, а также гибкостью макромолекул. При переходе от линейных цепей к разветвленным, редким трёхмерным сеткам и, наконец, к густым сетчатым структурам этот комплекс свойств становится всё менее выраженным. Сильно сшитые полимеры нерастворимы, неплавки и неспособны к высокоэластическим деформациям.
Полимеры могут существовать в кристаллическом и аморфном состояниях. Необходимое условие кристаллизации — регулярность достаточно длинных участков макромолекулы. В кристаллических полимерах. возможно возникновение разнообразных надмолекулярных структур (фибрилл, сферолитов, монокристаллов и др.), тип которых во многом определяет свойства полимерного материала. Надмолекулярные структуры в незакристаллизованных (аморфных) полимеров менее выражены, чем в кристаллических.
Незакристаллизованные полимеры могут находиться в трёх физических состояниях: стеклообразном, высокоэластическом и вязкотекучем. полимеры с низкой (ниже комнатной) температурой перехода из стеклообразного в высокоэластическое состояние называются эластомерами, с высокой — пластиками. В зависимости от химического состава, строения и взаимного расположения макромолекул свойства полимеров. могут меняться в очень широких пределах. Так, 1,4-цис-полибутадиен, построенный из гибких углеводородных цепей, при температуре около 20 град.С — эластичный материал, который при температуре — 60 град.С переходит в стеклообразное состояние; полиметилметакрилат, построенный из более жёстких цепей, при температуре около 20 град.С — твёрдый стеклообразный продукт, переходящий в высокоэластическое состояние лишь при 100 град.С.[8]
Целлюлоза — полимер с очень жёсткими цепями, соединёнными межмолекулярными водородными связями, вообще не может существовать в высокоэластическое состоянии до температуры её разложения. Большие различия в свойствах П. могут наблюдаться даже в том случае, если различия в строении макромолекул на первый взгляд и невелики. Так, стереорегулярный полистирол — кристаллическое вещество с температурой плавления около 235 град.С, а нестереорегулярный (атактический) вообще не способен кристаллизоваться и размягчается при температуре около 80 град.С.
Полимеры могут вступать в следующие основные типы реакций: образование химических связей между макромолекулами (т. н. сшивание), например при вулканизации каучуков, дублении кожи; распад макромолекул на отдельные, более короткие фрагменты (см. Деструкция полимеров); реакции боковых функциональных групп полимеров. с низкомолекулярными веществами, не затрагивающие основную цепь (т. н. полимераналогичные превращения); внутримолекулярные реакции, протекающие между функциональными группами одной макромолекулы, например внутримолекулярная циклизация. Сшивание часто протекает одновременно с деструкцией. Примером полимераналогичных превращений может служить омыление поливинилацетата, приводящее к образованию поливинилового спирта.
Скорость реакций полимеров. с низкомолекулярными веществами часто лимитируется скоростью диффузии последних в фазу полимеров. Наиболее явно это проявляется в случае сшитых полимеров. Скорость взаимодействия макромолекул с низкомолекулярными веществами часто существенно зависит от природы и расположения соседних звеньев относительно реагирующего звена. Это же относится и к внутримолекулярным реакциям между функциональными группами, принадлежащими одной цепи.
Некоторые свойства полимеров., например растворимость, способность к вязкому течению, стабильность, очень чувствительны к действию небольших количеств примесей или добавок, реагирующих с макромолекулами. Так, чтобы превратить линейный полимеры из растворимого в полностью нерастворимый, достаточно образовать на одну макромолекулу 1-2 поперечные связи.
Важнейшие характеристики полимеров — химический состав, молекулярная масса и молекулярно-массовое распределение, степень разветвлённости и гибкости макромолекул, стереорегулярность и др. Свойства полимеров. существенно зависят от этих характеристик.[6]