Сосуды микроциркуляторного русла. Развитие, строение и функциональная характеристика.




Орган обоняния

В обонятельном анализаторе 2системы- основная и вомероназальная, каждая из которых име-ет 3 части: перифе­рическую (органы обоняния), промежуточную, состоящую из проводников (аксоны нейросенсорных обонятельных клеток и нервных клеток обонятельных луковиц), и центральную, локализующуюся в гиппокампе коры больших полушарий для основной обонятельной системы.

Основной орган обоняния, являющийся периферичес­кой частью сенсорной системы, представлен ограниченным участком сли­зистой оболочки носа - обонятельной областью, покрывающей у человека верхнюю и отчасти среднюю раковины носовой полости, а также верхнюю часть носовой перегородки. Внешне обонятельная область отличается от респираторной части слизистой оболочки желтоватым цветом.

Периферической частью вомероназальной, или дополнительной, обоня­тельной системы является вомероназальный (якобсонов) орган. Он имеет вид парных эпителиальных трубок, замкнутых с одного конца и открывающихся другим концом в полость носа. У человека он расположен в соединительной ткани ос­нования передней трети носовой перегородки по обе ее стороны на грани­це между хрящом перегородки и сошником. Кроме якобсонова органа, вомероназальная система включает в себя вомероназальный нерв, терминаль­ный нерв и собственное представительство в переднем мозге - добавочную обонятельную луковицу.

Функции вомероназальной системы связаны с функциями половых органов (регуляция полового цикла и сексуального поведения) и эмоцио­нальной сферой.

Развитие. Основной орган обоняния имеет эктодермальное про­исхождение и развивается из плакод - утолщений передней части эктодер­мы головы. Из плакод формируются обонятельные ямки. У зародышей че­ловека на 4мес развития из элементов, составляющих стенки обоня­тельных ямок, образуются поддерживающие эпителиоциты и нейросенсорные обонятельные клетки. Аксоны обонятельных клеток, объединившись между собой, образуют в совокупности 20-40 нервных пучков, устремляющихся через отверстия в хрящевой закладке будущей решетчатой кости к обонятельным луковицам головного мозга. Здесь осуществляется синаптический контакт между терминалями аксонов и дендритами митральных нейронов обонятельных луковиц. Некоторые уча­стки эмбриональной обонятельной выстилки, погружаясь в подлежащую соединительную ткань, образуют обонятельные железы.

Вомероназальный орган формируется в виде парной закладки на 6нед развития из эпителия нижней части перего­родки носа. К 7нед завершается формирование полости вомероназального органа, а вомероназальный нерв соединяет его с добавоч­ной обонятельной луковицей. В вомероназальном органе плода 21нед развития имеются опорные клетки с ресничками и микроворсинками и рецепторные клетки с микроворсинками. Структурные особенности вомеро-назального органа указывают на его функциональную активность уже в перинатальном периоде.

Строение. Основной орган обоняния - периферическая часть обоня­тельного анализатора - состоит из пласта многорядного эпителия высотой 60-90мкм, в котором различают обонятельные нейросенсорные клетки, под­держивающие и базальные эпителиоциты. От подлежащей соединительной ткани они отделены хорошо выраженной базальной мемб­раной. Обращенная в носовую полость поверхность обонятельной выстилки покрыта слоем слизи.

Рецепторные, или нейросенсорные, обонятельные располагаются между поддерживающими эпителиоцитами и имеют короткий периферический отросток - дендрит и длинный центральный аксон. Их ядросодержащие части занимают срединное положение в толще обонятельной выстилки.

Обонятельных клеток у человека до 6 млн. Дистальные части периферических отростков обо-нятельных клеток заканчиваются харак­терными утолщениями - обонятельными булавами. Обоня­тельные булавы на своей округлой вершине несут до 10-12 подвиж­ных обонятельных ресничек.

Цитоплазма периферических отростков содержит митохондрии и вытя­нутые вдоль оси отростка микротрубочки диаметром до 20нм. Около ядра шЭПС. Реснички булав содержат продольно ориентированные фибриллы: 9пар периферических и 2центральных, отходящих от базальных телец. Обоня­тельные реснички подвижны и являются своеобразными антеннами для молекул пахучих веществ. Периферические отростки обонятельных клеток могут сокращаться под действием пахучих веществ. Ядра светлые с 1 или 2 крупными ядрышками. Базальная часть клетки продолжается в узкий аксон, который идет между опорными клетками. В соединительнотканном слое централь­ные отростки составляют пучки безмиелинового обонятельного нерва, ко­торые объединяются в 20-40 обонятельных нитей и через отверстия решетчатой кости направляются в обонятельные луковицы.

Поддерживающие эпителиоциты формируют многорядный эпителиальный пласт, в котором и располагаются обонятельные клетки. На апикальной поверхности поддерживающих эпителиоцитов имеются многочисленные микроворсинки длиной до 4мкм. Поддерживаю­щие эпителиоциты проявляют признаки апокриновой секреции и обладают высоким уровнем метаболизма. В цитоплазме ЭПС. Митохондрии - в апикальной части, где много гранул и вакуолей. Аппарат Гольджи над ядром. В цитоплазме содержится коричнево-желтый пигмент.

Базальные эпителиоциты находятся на базальной мембране и снабжены цитоплазматическими выростами, окружающими пучки центральных отростков обонятельных клеток. Цитоплазма их запол­нена рибосомами и не содержит тонофибрилл. Существует мнение, что базальные эпителиоциты служат источником регенерации рецепторных клеток.

Эпителий вомероназального органа состоит из рецепторной и респираторной частей. Рецепторная часть по строению сходна с обонятель­ным эпителием основного органа обоняния. Но обонятельные булавы рецепторных клеток вомероназального органа несут на своей поверхности не реснички, способные к активному движе­нию, а неподвижные микроворсинки.

Промежуточная, или проводниковая, часть основной обонятельной сенсорной системы начинается обонятельными безмиелиновыми нервными волокнами, которые объединяются в 20-40 нитевидных стволиков и через отверстия решетчатой кости направляются в обонятельные луковицы. Каждая обонятель­ная нить представляет собой безмиелиновое волокно, содержащее от 20 до 100 и более осевых цилиндров аксонов рецепторных клеток, погруженных в леммоциты. В обонятельных луковицах расположены вторые нейроны обоня­тельного анализатора. Это крупные нервные клетки, называемые митраль­ными, имеют синаптические контакты с несколькими тысячами аксонов нейросенсорных клеток одноименной, а частично и противоположной сто­роны. Обонятельные луковицы построены по типу коры больших полуша­рий головного мозга, имеют концентрически расположенные 6 слоев: 1слой обонятельных волокон, 2клубочковый, 3наружный сетевидный, 4слой тел митральных клеток, 5внутренний сетевидный, 6зернистый слой.

Промежуточная, или проводниковая, часть вомероназальной системы представлена безмиелиновыми волокнами вомероназального нерва, которые, подобно основным обонятельным волокнам, объединяются в нервные стволики, проходят через отверстия решетчатой кости и соединяются с добавочной обонятельной луковицей, которая распо­ложена в дорсомедиальной части основной обонятельной луковицы и име­ет сходное строение.

Центральный отдел обонятельной сенсорной системы локализуется в древней коре - в гиппокампе и в новой - гиппокамповой извилине, куда направляются аксоны митральных клеток (обонятельный тракт). Здесь происходит окончательный анализ обонятельной информации. Сенсорная обонятельная система через ретикулярную формацию связа­на с вегетативными центра-ми, чем и объясняются рефлексы с обонятель­ных рецепторов на пищеварительную и дых.системы.

Обонятельные железы. Врыхлой волокнистой ткани обоня­тельной области располагаются концевые отделы трубчато-альвеолярных желез, выделяющие секрет, который содержит мукопротеиды. Концевые отделы состоят из элементов двоякого рода: снаружи лежат бо­лее уплощенные клетки - миоэпителиальные, внутри - клетки, секретирующие по мерокриновому типу.

Регенерация. У млекопитающих в постнатальном онтогенезе обновление рецепторных обонятельных клеток происходит в течение 30сут. В конце жизненного цикла нейроны подвергаются деструкции. Малодифференциро­ванные нейроны базального слоя способны к митотическому делению, ли­шены отростков. В процессе их дифференцировки увеличивается объем кле­ток, появляются специализированный дендрит, растущий к поверхности, и аксон, растущий в сторону базальной мембраны. Клетки постепенно пе­ремещаются к поверхности, замещая погибшие нейроны. На дендрите фор­мируются специализированные структуры (микроворсинки и реснички).

 

Сердечно-сосудистая система. Развитие и морфофункциональная характеристика.

Сердечно-сосудистая система – совокупность органов (сердце, кровеносные и лимфатические сосуды), обеспечивающая распространение по организму крови и лимфы, содержащих питательные и биологически активные вещества, газы, продукты метаболизма.

Развитие. Сердце начинает развиваться на 17-е сутки из двух зачатков: 1)мезенхимы и 2) миоэпикардиальных пластинок висцерального листка спланхнотома в краниальном конце эм­бриона.

Из мезенхимы справа и слева образуются трубочки, которые впячиваются в висцеральные листки спланхнотомов. Та часть висцеральных листков, которая прилежит к мезенхимным трубочкам, превращается в миоэпикардиальную пластинку. В дальнейшем с участием туловищной складки происходит сближение правого и левого зачатков сердца и за­тем соединение этих зачатков впереди передней кишки. Из слившихся мезенхимных трубочек формируется эндокард сердца. Клетки миоэпикардиальных пластинок дифференци­руются в 2 направлениях: из наружной части образуется мезотелий, выстилающий эпикард, а клетки внутренней части дифференцируются в трех направлениях. Из них образуются: 1) сократительные кардиомиоциты; 2) проводящие кардиомиоциты; 3) эндокринные кардиомиоциты.

В процессе дифференцировки сократительных кардиомиоцитов клетки приобретают цилиндрическую форму, со­единяются своими концами при помощи десмосом, где в дальнейшем формируются вставочные диски (discus in­tercalates). В формирующихся кардиомиоцитах появляют­ся миофибриллы, расположенные продольно, канальцы гладкой ЭПС, за счет впячивания сарколеммы образуются Т-каналы, формируются митохондрии.

Проводящая система сердца начинает развиваться на 2-м месяце эмбриогенеза и заканчивается на 4-м месяце.

Клапаны сердца развиваются из эндокарда. Левый атриовентрикулярный клапан закладывается на 2-м месяце эмбрио­генеза в виде складки, которая называется эндокардиалъным валиком. В валик врастает соединительная ткань из эпикарда, из которой образуется соединительнотканная основа створок клапана, прикрепляющаяся к фиброзному кольцу.

Правый клапан закладывается в виде миоэндокардиального валика, в состав которого входит гладкая мышечная ткань. В створки клапана врастает соединительная ткань миокарда и эпикарда, при этом количество гладких миоци­тов уменьшается, они сохраняются лишь у основания ство­рок клапана.

На 7-й неделе эмбриогенеза формируются интрамуральные ганглии, включающие мультиполярные нейроны, между которыми устанавливаются синапсы.

Морфофункциональная характеристика. В кровеносной системе различают артерии, артериолы, гемокапилляры, венулы, вены и артериовенулярные анастомозы. Взаимосвязь между артериями и венами осуществляется системой микроциркуляторного русла.

По артериям кровь течет от сердца к органам. Как правило, эта кровь насыщена кислородом, за исключением легочной артерии, несущей венозную кровь. По венам кровь течет к сердцу и содержит в отличие от крови легочных вен мало кислорода. Гемокапилляры соединяют артериальное звено кровеносной системы с венозным, кроме так называемых чудесных сетей, в которых капилляры находятся между двумя одноименными сосудами (между артериями в клубочках почки). Стенка всех артерий, так же, как и вен, состоит из трех оболочек: наружной, средней (медии) и внутренней. Их толщина, тканевый состав и функциональные особенности неодинаковы в сосудах разных типов.

 

Сосуды микроциркуляторного русла. Развитие, строение и функциональная характеристика.

Микроциркуляторное русло – функциональный комплекс кровеносных сосудов, окруженный лимфатическими сосудами и капиллярами вместе с соединительной тканью, обеспечивающий регуляцию кровенаполнения органов, транскапиллярный обмен и дренажно-депонирующую функцию. Включает: артериолы, капилляры, венулы, артериоло-венозные анастомозы, лимфатические сосуды.

Развитие. Развивается из мезенхимы в стенке желточного мешка и ворсин хориона (вне тела зародыша) на 2-3 неделе эмбрионального развития. Мезенхимные клетки объединяются с образованием кровяных островков. Центральные клетки дифференцируются в первичные клетки крови (эритроциты 1 генерации), а периферические дают начало стенке сосуда. Через неделю после образования первых сосудов они появляются в теле зародыша в виде щелевидных полостей или трубочек. На 2 месяце происходит объединение зародышевых и незародышевых сосудов с образованием единой системы.

Строение.

Артериола – мелкий артериальный сосуд мышечного типа, имеющий диаметр 50-100мкм. Стенка состоит из:

1. Внутренняя оболочка:

· Эндотелия – однослойный, плоский эпителий, ангеодермального типа. Эпителиоциты полигональные, с микровыростами.

· Субэндотелия – РНСТк.

· Внутренней эластической мембраны, в которой имеются отверсия, через которые проникают гладкие миоциты и осуществляется работа сосуда.

2. Средняя – 1-2 слоя циркулярно расположенных гладких миоцитов

3. наружняя оболочка образована РНСТк.

По мере уменьшения диаметра все оболочки истончаются, гладкие миоциты могут отсутствовать на стыке капилляров, находятся только в местах бифуркации сосудов.

Функция артериол: транспортная, обменная, обеспечение регуляции кровотока и кровенаполнения органов и тканей.

Капилляры имеют различный диаметр в зависимости от функций и располодения в органах. Типы:

1. Соматический – находятся в скелетной МТк легких, кровоснабжают нервную ткань. диаметр 4-7 мкм. Слои:

· Эндотелий на базальной мембране – непрерывен

· Клетки-перициты

· Адвентициальные клетки

2. Фенестрированные – находтся в составле капиллярного клубочка почки, ворсин кишечника, входят в состав эндокринных органов. Эндотелий истончается в своей цитоплазменной части, т.о. облегчается диффузия. Базальная мембрана непрерывна.

3. Синусоидные – диаметр 20-30 мкм. Находится в паренхиме печени, структурах органов кроветворения. Эндотелий прерывистый, прерывная базальная мембрана – содержит поры. Они могут закрываться, т.о. диаметр непостоянный, может выключаться из кровотока. Наличие пор способствует миграции высокомолекулярных соединений и форменных элементов крови.

Венулы классифицируются на 3 разновидности:

1) по­сткапиллярные венулы (диаметр 8-30 мкм);

2) собиратель­ные венулы (диаметр 30-50 мкм);

3) мышечные венулы (диаметр 50-100 мкм).

Стенка посткапиллярных венул мало чем отличается от венозного конца капилляра. Разница заключается в том, что в стенке посткапиллярных венул больше перицитов, т. е. в по­сткапиллярных венулах есть эндотелий и перициты, но нет миоцитов.

Стенка собирательных венул отличается появлением в средней оболочке гладких миоцитов и лучше выраженной адвентициальной оболочкой.

Стенка мышечных венул характеризуется содержанием в средней оболочке 1-2 слоев гладких миоцитов.

Функции венул:

1) дренажная (поступление из соедини­тельной ткани в просвет венулы продуктов обмена);

2) из ве­нул в окружающую ткань мигрируют форменные элементы крови.

Aртериоловенулярные анастамозы — это соединения сосудов, по которым кровь из артериол оттекает в венулы, минуя капилляры. Длина ABA достигает 4 мм, диа­метр — более 30 мкм.

ABA открываются и закрываются 4-12 раз в минуту.

Функции ABA:

1) регуляция кровотока в капиллярах;

2) артериолизация венозной крови;

3) при сжатии капилляров па­тологическим процессом кровь из артериол сразу поступает в венулы;

4) повышение внутривенулярного давления.

I.АТИПИЧНЫЕ (ПОЛУШУНТЫ) – (смешанная кровь) соединение через короткий капиллярартериолы с венулой. По этим анастомозам в венулу поступает сме­шанная кровь, так как при движении крови по полушунту происходит обмен веществ и газов между кровью и окружа­ющими тканями. Функции полушунтов — дренажная, обменная.
II.ИСТИННЫЕ (ШУНТЫ) – (чисто артериальная кровь) прямые короткие, петлеобразные Шунты подразделяются на:
1) ана­стомозы без специальных сократительных устройств, в их артериальном конце есть циркулярно расположенные глад­кие миоциты; как и в артериоле, эти миоциты, сокращаясь, закрывают просвет и, расслабляясь, открывают его; 2) ана­стомозы со специальными сократительными устройствами делятся на 2 типа:
а) ABA типа замыкательных артерий, характеризуются наличием в их подэндотелиальном слое про­дольно расположенных одного или нескольких пучков глад­ких миоцитов, которые при сокращении утолщаются и зак­рывают просвет анастомоза (ABA запирательного типа); б) ABA эпителиоидного типа, миоциты которых, расположен­ные продольно в средней оболочке, приближаясь к венозно­му концу, превращаются в клетки Е, напоминающие эпите­лиальные. При всасывании воды эти клетки утолщаются и закрывают анастомоз. Анастомозы эпителиоидного типа делятся на простые и сложные.
· Простые – в средней оболочке артериолы имеются специальные эпителиоидные клетки, способные к набуханию и отбуханию, от артериолы к венуле отходит 1 ствол · Сложные – приносящая артериола разделяется на 2-4 ветви, которые лежат в одной соединительно-тканной оболочке, в этом месте и артериолах есть эпителиоидные клетки, и за этими клетками начинается венозный сегмент анастамоза, от артериолы к венуле отходят нес­колько стволов, покрытых общей оболочкой.

 

Сердце. Источники развития. Строение оболочек сердца. Васкуляризация. Иннервация. Регенерация. Возрастные изменения. Трансплантация.

Развитие. Сердце начинает развиваться на 17-е сутки из двух зачатков: 1)мезенхимы и 2) миоэпикардиальных пластинок висцерального листка спланхнотома в краниальном конце эм­бриона.

Из мезенхимы справа и слева образуются трубочки, которые впячиваются в висцеральные листки спланхнотомов. Та часть висцеральных листков, которая прилежит к мезенхимным трубочкам, превращается в миоэпикардиальную пластинку. В дальнейшем с участием туловищной складки происходит сближение правого и левого зачатков сердца и за­тем соединение этих зачатков впереди передней кишки. Из слившихся мезенхимных трубочек формируется эндокард сердца. Клетки миоэпикардиальных пластинок дифференци­руются в 2 направлениях: из наружной части образуется мезотелий, выстилающий эпикард, а клетки внутренней части дифференцируются в трех направлениях. Из них образуются: 1) сократительные кардиомиоциты; 2) проводящие кардиомиоциты; 3) эндокринные кардиомиоциты.

В процессе дифференцировки сократительных кардиомиоцитов клетки приобретают цилиндрическую форму, со­единяются своими концами при помощи десмосом, где в дальнейшем формируются вставочные диски (discus in­tercalates). В формирующихся кардиомиоцитах появляют­ся миофибриллы, расположенные продольно, канальцы гладкой ЭПС, за счет впячивания сарколеммы образуются Т-каналы, формируются митохондрии.

Проводящая система сердца начинает развиваться на 2-м месяце эмбриогенеза и заканчивается на 4-м месяце.

Клапаны сердца развиваются из эндокарда. Левый атриовентрикулярный клапан закладывается на 2-м месяце эмбрио­генеза в виде складки, которая называется эндокардиалъным валиком. В валик врастает соединительная ткань из эпикарда, из которой образуется соединительнотканная основа створок клапана, прикрепляющаяся к фиброзному кольцу.

Правый клапан закладывается в виде миоэндокардиального валика, в состав которого входит гладкая мышечная ткань. В створки клапана врастает соединительная ткань миокарда и эпикарда, при этом количество гладких миоци­тов уменьшается, они сохраняются лишь у основания ство­рок клапана.

На 7-й неделе эмбриогенеза формируются интрамуральные ганглии, включающие мультиполярные нейроны, между которыми устанавливаются синапсы.

Строение оболочек сердца.

ЭНДОКАРД (полость сердца) 1. эндотелий (на толстой базальной мембране) 2. подэнтотелиальный слой (РСТ с малодифференцированными клетками) 3. мышечно-эластический слой 4. наружный соединительно-тканный слой (РСТ с толстыми эластическими волокнами, имеются коллагеновые и ретикулярные волокна) (миокард) ЭПИКАРД (полость перикарда) 1. мезотелий на базальной мембране 2. поверхностный слой коллагеновых волокон 3. слой эластических волокон 4. глубокий слой коллегеновых волокон 5. глубокий коллагеново-эластический слой (миокард)
ПЕРИКАРД · мезотелий на базальной мембране + тонкая прослойка РСТ, с большим содержанием эластических волокон
МИОКАРД · сократительные кардиомиоциты, проводящие (атипичные) кардиомиоциты + межмышечная рыхлая соединительная ткань

Стенка сердца состоит из 3 оболочек: 1) эндокарда (endo­cardium), 2) миокарда (myocardium) и 3) эпикарда (epicardium).

Эндок ард выстилает предсердия и желудочки, в разных местах имеет различную толщину, состоит из 4 слоев: 1) эн­дотелия; 2) субэндотелия; 3) мышечно-эластического слоя; 4) наружного соединительнотканного слоя. (соответствует строению вены мышечного типа)

Левый атриовентрикулярный клапан включает 2 створ­ки. Основой створки клапана является соединительноткан­ная пластинка, состоящая из коллагеновых и эластических волокон, незначительного количества клеток и основного межклеточного вещества. Пластинка прикрепляется к фи­брозному кольцу, окружающему клапан, и покрыта эндотелиоцитами, под которыми находится субэндотелий.

Правый атриовентрикулярный клапан состоит из 3 створок. Поверх­ность клапанов, обращенных к предсердию, гладкая, к желу­дочку — неровная, так как к этой поверхности прикрепляют­ся сухожилия сосочковых мышц.

Клапаны аорты и легочной артерии называются полу­лунными. Они состоят из 3 слоев: 1) внутреннего; 2) среднего и 3) наружного.

Внутренний слой сформирован за счет эндокарда, вклю­чает эндотелий, субэндотелий, содержащий фибробласты с консолями, поддерживающими эндотелиальные клетки. Глубже располагаются слои коллагеновых и эластических волокон.

Средний слой представлен рыхлой соединительной тканью.

Наружный слой состоит из эндотелия, сформированного за счет эндотелия сосуда, и коллагеновых волокон, прони­кающих в субэндотелий клапана из фиброзного кольца.

Миокард состоит из функциональных волокон, которые образуются при соединении концов кардиомиоцитов. Кардиомиоциты имеют цилиндрическую форму, их длина — до 120 мкм, диаметр 15-20 мкм. Места соединения концов кар­диомиоцитов называются вставочными дисками (discus in­tercalates). В состав дисков входят десмосомы, места прикре­пления актиновых филаментов, интердигитации и нексусы. В центре кардиомиоцита располагается 1-2 овальных, обыч­но полиплоидных, ядра.

В кардиомиоцитах хорошо развиты митохондрии, глад­кая ЭПС, миофибриллы, слабо развиты гранулярная ЭПС, комплекс Гольджи, лизосомы. В оксифильной цитоплазме имеются включения гликогена, липидов и миоглобина.

Миофибриллы состоят из актиновых и миозиновых фила­ментов. За счет актиновых филаментов образуются светлые (изотропные) диски, разделенные телофрагмами. За счет миозиновых филаментов и заходящих между ними концов актиновых филаментов образуются анизотропные диски (ди­ски А), разделенные мезофрагмой. Между двумя телофрагма­ми располагается саркомер, являющийся структурной и функциональной единицей миофибриллы.

Напротив каждого диска имеется система L-канальцев, включающих 2 латеральные цистерны (канальца), соединен­ные продольными канальцами. Система L-канальцев окру­жает миофибриллы. На границе между дисками со стороны сарколеммы отходит впячивание — Т-канал, который рас­полагается между латеральными цистернами двух соседних L-систем. Структура, состоящая из Т-канала и двух лате­ральных цистерн, между которыми проходит этот канал, называется триадой.

От боковой поверхности кардиомиоцитов отходят отро­стки — мышечные анастомозы, которые соединяются с бо­ковыми поверхностями кардиомиоцитов соседнего функ­ционального волокна. Благодаря мышечным анастомозам сердечная мышца представляет собой единое целое. Сер­дечная мышца прикрепляется к скелету сердца. Скелетом сердца являются фиброзные кольца вокруг атриовентрикулярных клапанов и клапанов легочной артерии и аорты.

Секреторные кардиомиоциты (эндокриноциты) находят­ся в предсердии, содержат много отростков. В этих клетках слабо развиты миофибриллы, гладкая ЭПС, Т-каналы, вста­вочные диски; хорошо развиты комплекс Гольджи, грануляр­ная ЭПС и митохондрии, в цитоплазме содержатся секретор­ные гранулы. Функция: вырабатывают гормон — ПНФ. ПНФ воздействует на те клетки, которые имеют специальные ре­цепторы к нему. Такие рецепторы имеются на поверхности со­кратительных кардиомиоцитов, миоцитов кровеносных сосу­дов, эндокриноцитах клубочковой зоны коры надпочечников, клетках эндокринной системы почек. Таким образом, ПНФ стимулирует сокращение сердечной мышцы, регулирует арте­риальное давление, водно-солевой обмен, мочевыделение.

Проводящая система сердца (systema conducens cardiacum) – мышечные клетки, формирующие и проводящие импульсы к сократительным клеткам сердца.

Проводящая система сердца представлена синусно-предсердным узлом, атриовентрикулярным узлом, предсердно-желудочковым пучком (пучком Гиса) и ножками пучка Гиса.

Синусно-предсердный узел представлен пейсмекерными клетками (Р-клетками), расположенными в центре узла, диа­метр которых 8-10 мкм. Форма Р-клеток овальная, их миофибриллы развиты слабо, имеют различное направление. Глад­кая ЭПС Р-клеток развита слабо, в цитоплазме имеется вклю­чение гликогена, митохондрии, отсутствуют вставочные ди­ски и Т-каналы. В цитоплазме Р-клеток много свободного кальция, благодаря чему они способны ритмично вырабаты­вать сократительные импульсы.

Снаружи от пейсмекерных клеток располагаются прово­дящие кардиомиоциты II типа. Это узкие, удлиненные клет­ки, малочисленные миофибриллы которых расположены ча­ще всего параллельно. В клетках слабо развиты вставочные диски и Т-каналы. Функция — проведение импульса к прово­дящим кардиомиоцитам III типа или к сократительным кардиомиоцитам. Проводящие кардиомиоциты II типа иначе на­зываются переходными.

Атриовентрикулярный узел состоит из небольшого коли­чества пейсмекерных клеток, расположенных в центре узла, и многочисленных проводящих кардиомиоцитов II типа. Функции атриовентрикулярного узла: 1) вырабатывает им­пульс с частотой 30-40 в минуту; 2) кратковременно задер­живает прохождение импульса, идущего от синусно-предсердного узла на желудочки, благодаря чему сначала сокраща­ются предсердия, потом — желудочки.

В том случае, если прекращается поступление импульсов от синусно-предсердного узла к атриовентрикулярному (по­перечная блокада сердца), то предсердия сокращаются в обычном ритме (60-80 сокращений в минуту), а желудоч­ки — в 2 раза реже. Это опасное для жизни состояние.

Проводящие кардиомиоциты III типа расположены в пуч­ке Гиса и его ножках. Их длина 50-120 мкм, ширина — около 50 мкм. Цитоплазма этих кардиомиоцитов светлая, разнона­правленные миофибриллы, вставочные диски и Т-каналы развиты слабо. Их функция — передача импульса от кардио­миоцитов II типа на сократительные кардиомиоциты. Кар­диомиоциты III типа образуют пучки (волокна Пуркинье), которые чаще всего располагаются между эндокардом и мио­кардом, встречаются в миокарде. Волокна Пуркинье подхо­дят и к сосочковым мышцам, благодаря чему к моменту со­кращения желудочков напрягаются сосочковые мышцы, что препятствует выворачиванию клапанов в предсердия.

Иннервация сердца. Сердце иннервируется и чувстви­тельными, и эфферентными нервными волокнами. Чувстви­тельные (сенсорные) нервные волокна поступают из 3 источ­ников: 1) дендриты нейронов спинномозговых (спинальных) ганглиев верхнегрудного отдела спинного мозга; 2) дендриты чувствительных нейронов узла блуждающего нерва; 3) ден­дриты чувствительных нейронов интрамуральных ганглиев. Эти волокна заканчиваются рецепторами.

Эфферентными волокнами являются симпатические и парасимпатические нервные волокна, относящиеся к веге­тативной (автономной) нервной системе.

Симпатическая рефлекторная дуга сердца включает цепь, состоящую из 3 нейронов. 1 -й нейрон заложен в спинальном ганглии, 2-й — в латерально-промежуточном ядре спинного мозга, 3-й — в периферическом симпатическом ганглии (верх­нем шейном или зйездчатом).

Ход импульса по симпатической рефлекторной дуге: рецептор, дендрит 1-го нейрона, аксон 1-го нейрона, дендрит 2-го нейрона, аксон 2-го нейрона обра­зует преганглионарное, миелиновое, холинергическое волок­но, контактирующее с дендритом 3-го нейрона, аксон 3-го нейрона в виде постганглионарного, безмиелинового адренергического нервного волокна направляется в сердце и заканчи­вается эффектором, который непосредственно на сократи­тельные кардиомиоциты не воздействует. При возбуждении симпатических волокон частота сокращений увеличивается.

Парасимпатическая рефлекторная дуга состоит из цепи 3 нейронов. 1-й нейрон заложен в чувствительном ганглии блуждающего нерва, 2-й — в ядре блуждающего нерва, 3-й — в интрамуральном ганглии.

Ход импульса по парасимпати­ческой рефлекторной дуге: рецептор 1-го нейрона, дендрит 1-го нейрона, аксон 1-го нейрона, дендрит 2-го нейрона, ак­сон 2-го нейрона образует преганглионарное, миелиновое, холинергическое нервное волокно, которое передает импульс на дендрит 3-го нейрона, аксон 3-го нейрона в виде постган­глионарного безмиелинового, холинергического нервного во­локна направляется к проводящей системе сердца. При воз­буждении парасимпатических нервных волокон частота и сила сердечных сокращений уменьшаются (брадикардия).

Эпикард представлен соединительнотканной основой, покрытой мезотелием (однослойный плоский эпителий целомического типа) — это висцеральный листок, который переходит в париетальный листок — перикард. Перикард то­же выстлан мезотелием. Между эпикардом и перикардом имеется щелевидная полость, заполненная небольшим коли­чеством жидкости, выполняющей смазывающую функцию. Перикард развивается из париетального листка спланхнотома. В соединительной ткани эпикарда и перикарда имеются жировые клетки (адипоциты).

Возрастные изменения сердца. В процессе развития сердца имеют место 3 этапа: 1) дифференцировка; 2) стадия стабилизации; 3) стадия инволюции (обратного развития).

Дифференцировка начинается уже в эмбриогенезе и про­должается сразу после рождения, так как изменяется харак­тер кровообращения. Сразу после рождения закрывается овальное окно между левым и правым предсердием, закрыва­ется проток между аортой и легочной артерией. Это приво­дит к снижению нагрузки на правый желудочек, который подвергается физиологической атрофии, и к повышению нагрузки на левый желудочек, что сопровождается его фи­зиологической гипертрофией. В это время происходит диф­ференцировка сократительных кардиомиоцитов, сопровож­даемая гипертрофией их саркоплазмы за счет увеличения количества и толщины миофибрилл. Вокруг функциональ­ных волокон сердечной мышцы есть тонкие прослойки рых­лой соединительной ткани.

Период стабилизации начинается примерно в 20-летнем возрасте и заканчивается в 40 лет. После этого начинается стадия инволюции, сопровождаемая уменьшением толщины кардиомиоцитов вследствие уменьшения толщины миофи­брилл. Прослойки соединительной ткани утолщаются. Уме­ньшается количество симпатических нервных волокон, в то время как число парасимпатических практически не изме­няется. Это приводит к снижению частоты и силы сокраще­ний сердечной мышцы. К старости (70 лет) уменьшается и количество парасимпатических нервных волокон. Крове­носные сосуды сердца подвергаются склеротическим изме­нениям, что затрудняет кровоснабжение миокарда (мускула­туры сердца). Это называется ишемической болезнью. Ишемическая болезнь может привести к омертвению (некрозу) сердечной мышцы, что называется инфарктом миокарда.

Кровоснабжение сердца обеспечивается венечными арте­риями, которые отходят от аорты. Венечные артерии — это типичные артерии мышечного типа. Особенность этих арте­рий заключается в том, что в субэндотелии и в наружной обо­лочке имеются пучки гладких миоцитов, расположенных продольно. Артерии разветвляются на более мелкие сосуды и капилляры, которые затем собираются в венулы и коронар­ные вены. Коронарные вены впадают в правое предсердие или венозный синус. Следует отметить, что в эндокарде ка­пилляры отсутствуют, так как его трофика осуществляется за счет крови камер сердца.

Репаративаня регенерация возможна только в грудном или в раннем детском возрасте, когда кардиомиоциты спо­собны к митотическому делению. При гибели мышечных во­локон они не восстанавливаются, а замещаются соедини­тельной тканью.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-04-04 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: