Составить систему уравнений, применяя законы Кирхгофа для определения токов во всех ветвях





Анализ электрического состояния линейных и нелинейных электрических цепей постоянного тока

Расчет линейных электрических цепей постоянного тока

Для электрической цепи, изображенной на (рис.1.1), выполнить следующее:

1) составить на основании законов Кирхгофа систему уравнений для определения токов во всех ветвях схемы;

2) определить токи во всех ветвях схемы, используя метод контурных токов;

3) определить токи во всех ветвях схемы на основании метода наложения;

4) составить баланс мощностей для заданной схемы;

5) результаты расчета токов по пунктам 2 и 3 представить в виде таблицы и сравнить;

6) определить ток во второй ветви методом эквивалентного генератора;

7) построить потенциальную диаграмму для любого замкнутого контура, включающего обе ЭДС.

Дано: E1 =65 В, E2 =15 В, R1 =53 Ом, R2 =34 Ом, R3 =24 Ом, R4 =18 Ом, R5 =25 Ом, R6 =42 Ом, r01 =1 Ом, r02 =1 Ом.

 
Определить: I1, I2, I3, I4, I5, I6
 

 

Рисунок 1.1 Исходная схема

Составить систему уравнений, применяя законы Кирхгофа для определения токов во всех ветвях

Произвольно задаемся направлением токов в ветвях цепи I1 , I2 , I3 , I4 , I5 , I6.

 
 

 
 
 
 
 
 
 
 
 
 

Рисунок 1.2 Схема цепи для составления уравнений по законам Кирхгофа

Составляем систему уравнений (в системе должно быть столько уравнений, сколько в цепи ветвей). В нашей цепи шесть ветвей, значит, в системе будет шесть уравнений. Сначала составляем уравнение по первому закону Кирхгофа. В цепи с n узлами будет (n-1) уравнений, в нашей цепи четыре узла, значит, будет три уравнения. Составляем три уравнения, для трех произвольных узлов.

Узел A: I5 - I4 + I3 = 0

Узел C: I2 - I6 - I3 = 0

Узел B: I6 - I5 + I1= 0

Теперь составляем недостающие три уравнения для трех независимых контуров. Чтобы они были независимыми, надо в каждый контур включить хотя бы одну ветвь, не входящую в предыдущую.

Задаемся обходам каждого контура и составляем уравнения по второму закону Кирхгофа.

Контур CD- обход против часовой стрелки

E1 =I1 (R1 +r01) + I5R5+ I4R4

Контур AB- обход против часовой стрелки

E2 – E1 = I2 (R2 +r02) + I6R6 - I1 (R1 +r01)

Контур ACDB- обход против часовой стрелки

0 = I3R3 – I5R5 – I6R6

ЭДС в контуре берется со знаком "+", если направление ЭДС совпадает с обходом контура, если не совпадает - знак "-".

Падения напряжения на сопротивления контура, берется со знаком "+", если направления тока в нем совпадает с обходом контура со знаком "-", если не совпадает.

Мы получили систему из шести уравнений с шестью неизвестными:

Решив систему, определим величину и направление тока во всех ветвях схемы.

Если при решении системы ток получается со знаком "-", значит его действительное направление обратно тому направлению, которым мы задались.

 
2) Определить токи во всех ветвях схемы, используя метод контурных токов

           
 
   
   
 
 

 


Рисунок 1.3 Схема цепи для вычисления методом контурных токов

В заданной цепи можно рассмотреть три контура-ячейки и вести для них контурные токи I11 , I22 , I33 .

Контуры-ячейки имеют ветвь, не входящую в другие контуры - это внешние ветви. В этих ветвях контурные токи являются действительными токами ветвей.

Ветви, принадлежащие двум смежным контурам, называются смежными ветвями. В них действительный ток равен алгебраической сумме контурных токов смежных контуров, с учетом их направления.

При составлении уравнений по второму закону Кирхгофа в левой части равенства алгебраически суммируются ЭДС источников, входящих в контур-ячейку, в правой части равенства алгебраически суммируются напряжения на сопротивлениях, входящих в этот контур, а также учитывается падение напряжения на сопротивлениях смежной ветви, определяемое по контурному току соседнего контура.

На основании вышеизложенного порядок расчета цепи методом контурных токов будет следующим:

Стрелками указываем выбранные направления контурных токов I11 , I22 , I33 в контурах-ячейках (направление обхода контуров принимаем таким же);

Составляем уравнения и решаем систему уравнений или методом подстановки, или с помощью определителей.

Подставляем численное значение ЭДС и сопротивлений:

 

Решим систему с помощью определителей. Вычислим определитель системы Δ и частные определители Δ1 , Δ2 , Δ3.

 


Вычислим контурные токи:

Вычислим действительные токи:





Читайте также:
Какие слова найти родителям, чтобы благословить молодоженов?: Одной из таких традиций является обязательная...
Понятие о дефектах. Виды дефектов и их характеристика: В процессе эксплуатации автомобилей происходит...
Что такое филология и зачем ею занимаются?: Слово «филология» состоит из двух греческих корней...

Рекомендуемые страницы:


Поиск по сайту

©2015-2020 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-20 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту:

Обратная связь
0.015 с.