Магистральная схема применяется при равномерном распределении нагрузки




на площади цеха. Монтаж магистральных схем выполняется сборными конструкциями магистральных шинопроводов, которые прокладываются на высоте 5,5 м и распределительными шинопроводами, которые устанавливаются на высоте 2,5 м от пола, что обеспечивает ускорение монтажа и удешевление по стоимости.

В цехе №3 часть электроприемников получает питание от магистралей, часть — oт силовых РП, которые, в свою очередь, питаются либо от щита ТП, либо от магистральных или распределительных шинопроводов. Модульные проводки могут получать питание от распределительных шинопроводов или от силовых РП, включенных по радиальной схеме. Такое сочетание позволяет более полно использовать достоинства радиальных и магистральных схем.

Электрическая схема смешанной (радиально-магистральной) цеховой сети (указаны ступени для определения расчетных нагрузок на ЭВМ).

1.2 Электрическое освещение цеха

 

1.2.1 Описание системы освещения, источников света, светильной арматуры

Для электрического освещения цехов применяются следующие виды освещения: общее, местное и комбинированное.

Общее освещение производственных помещений предпочтительно для освещения больших размеров, при этом размещение их осуществляется рядами или сосредоточенными группами, освещение должно быть равномерным.

Местное освещение выполняется светильниками местного освещения рабочих мест при наличии общего освещения.

Комбинированное освещение состоит из общего освещения и частично из местного освещения.

Принимаем электрическое освещение цеха комбинированным.

На промышленных предприятиях для осветительных установок применяется 3-х фазное 4-х проводная система с глухозаземлённой нейтралью напряжением 380 / 220 В, для местного освещения применяется напряжение 42 В (36 В) через понижающий трансформатор с лампами накаливания.

При числе работающих более 50 человек в цехе кроме общего освещения должно быть предусмотрено аварийное освещение. Обычно питание рабочего и аварийного освещения совмещено с питанием силовой нагрузки. В отношении требуемой надёжности электроснабжения осветительные установки делятся на три категории: 1 категория – осветительные установки, перерыв в электроснабжении которых не должен иметь места или допускается лишь на время автоматического включения резерва; 2 категория – осветительные установки, для которых допускается перерыв на время, необходимое для ручного включения резерва дежурным персоналом; 3 категория – осветительные установки, допускающие перерыв питания до одних суток.

На основании вышесказанного принимаем электроснабжение осветительных установок цеха по 1 категории. Питание рабочего и аварийного освещения выполняется от КТП цеха. Резервирование питания рабочего освещения осуществляется через шкаф АВР – автоматическое включение резерва. Для освещения цеха применяются: магистральные щитки МЩ1 и МЩ2, которые устанавливаются в помещении низкого напряжения и запитываются соответственно от ЩО1 и ЩО2; шкаф АВР – автоматическое включение резерва, который запитывается от щитков МЩ1 и МЩ2; групповые щитки ГЩ-РО и ГЩ-АО, от которых запитывается общее освещение цеха и производственных помещений и аварийное освещение.

Выбор освещённости на рабочих местах общего освещения и аварийного освещения в производственных помещениях производится по СНиП-59.

Принимаем для общего освещения цеха – 50 лк, аварийного – 0,5 лк.

Выбор светильников производится на основе учёта следующих требований: экономических, эстетических, светотехнических, окружающей среды, электробезопасности. Для общего освещения цехов используют светильники с лампами накаливания, люминесцентные и ДРЛ. Для освещения цеха принимаем лампы накаливания и ДРЛ.

В цеху применяются комбинированное освещение смесь общего и местного освещения отдельных зон. Она включает в себя светильники, расположенные непосредственно у рабочего места и предназначенные для освещения только лишь рабочей поверхности (местное освещение), а также светильники общего освещения, предназначенные для выравнивания раcпределения яркости в поле зрения и создания необходимой освещенности по проходам освещаемого помещения. Светильник общего назначения: светильник, не предназначенный для специального назначения. Как правило, стационарные светильники рассчитаны на постоянное присоединение к электрической сети без помощи штепсельных вилок или подобных устройств. Примерами светильников, предназначенных для использования в труднодоступном месте, является подвесные и потолочные светильники.

 

1.2.2Конструктивное выполнение силовой сети

 

Питание осветительных установок производят от общих для силовых и осветительных приемников трансформаторов на напряжении 380/220 В. Область применения самостоятельных осветительных трансформаторов в сетях промышленных предприятий ограничивается случаями, когда характер силовой нагрузки (мощные сварочные аппараты, частый пуск мощных электродвигателей с короткозамкнутым ротором) не позволяет при совместном питании обеспечить требуемое качество напряжения у ламп.

Осветительные сети не совмещаются с силовыми сетями. Наиболее характерные схемы питания осветительных установок приведены на рисунках 4 и 5. В качестве аппаратов защиты и управления линиями питающей сети показаны автоматические выключатели (автоматы). На щитах подстанций и магистральных щитках (пунктах) могут использоваться предохранители и рубильники.

Питание от одно- и двухтрансформаторных встроенных комплектных трансформаторных подстанций (рисунок 3). Для питания освещения в большинстве случаев устанавливаются магистральные щитки 6 с автоматами. При устройстве дистанционного управления освещением устанавливаются щиты станций управления (ЩСУ) 7 с автоматами и магнитными пускателями или контакторами. От магистральных щитков или ЩСУ отходят линии питающей сети к групповым щиткам 8; магистральный щиток или ЩСУ питается непосредственно от КТП.

1 — трансформатор; 2 — вводной автоматический выключатель; З — секционный автоматический выключатель; 4 — линейный автоматический выключатель; 5 — силовой магистральный шинопровод; 6 — магистральный щиток; 7— щит станции управления; 8 — групповой щиток рабочего освещения

Рисунок 3 - Схемы питания рабочего освещения от КТП

В цехах, где светильники устанавливаются на специальных мостиках, применяется схема питания распределительными шинопроводами типа ШОС на силу тока 250, 400 и 630 А. Такую схему целесообразно применять в помещениях с нормальными условиями среды при значительной суммарной мощности светильников и допустимости одновременного включения общего освещения больших участков.

а - от магистральных щитков; б- от силовых магистралей;

1 — магистральный щиток; 2 – щиток рабочего освещения; 3 – щиток

аварийного (эвакуационного) освещения; 4 – силовая магистраль

Рисунок 4 - Схемы перекрестного питания рабочего и аварийного (эвакуационного) освещения

Питание аварийного и эвакуационного освещения. Намечая схему питания аварийного и эвакуационного освещения, необходимо соблюдать требования к надежности их действия. Групповые щитки этих видов освещения могут питаться, как и щитки рабочего освещения, отдельными линиями через магистральные щитки от щитов подстанций, от вводов в здания или от силовой сети. Если в здании расположены несколько подстанций, питаемых от независимых источников питания, аварийное освещение может питаться по перекрестной схеме. В этом случае рабочее и аварийное освещение каждого участка здания питается от разных подстанций.

Для питания освещения основных участков и бытовых помещений используем:

Определить по плану помещений основные расстояния.

6м   МЩО 3м     2м ЩО1 Р=8800 Вт L1=17м Р1=160 Вт L2=10м Р2=240 Вт L3=5м Р3=480 Вт L4=51 Р4=3200 Вт L5=41м Р5=3200 Вт L6=57м Р6=120 Вт L7=36м Р70=960 Вт L8=10м Р8=240 Вт   ЩО2 Р=10520 Вт L9=40м Р9=3200 Вт L10=35м Р10=3200 Вт L11=30м Р11=4000 Вт L12=35м Р12=120 Вт    

 

Рисунок – 5 Схема осветительной сети автоматизированного цеха

Для выбора питающих проводов и распределительных пунктов необходимо иметь данные по освещению станочного отделения и бытовых помещений.Исходными данными для такого выбора являются данные приведенные таблице.

 

ПМ.02 - Электрооборудование производственного цеха

 

2.1 Аппараты защиты производственного участка

 

Все существующие эксплуатируемые или вновь сооружаемые электрические сети должны быть обеспечены необходимыми и достаточными средствами защиты, прежде всего, от поражения электрическим током людей, работающих с этими сетями, участков цепей и электрооборудования от токов перегрузки, токов короткого замыкания, пиковых токов. Эти токи могут привести к повреждению как самих сетей, так и электроприборов, работающих в этих сетях.

Каждая трансформаторная подстанция, каждая воздушная линия, каждая кабельная линия и распределительные внутридомовые сети, каждый электроприёмник имеют аппараты защиты, обеспечивающие их бесперебойную и надежную работу.

Таких аппаратов на данный момент в мире имеется огромный выбор. Их можно подобрать по типу, по способу подключения, по параметрам защиты. Аппараты защиты электрооборудования и электрических сетей очень обширная группа и включает в себя такие аппараты как: плавкие вставки (предохранители), автоматические выключатели, разнообразные реле (токовые, тепловые, напряжения и т. п.).

Плавкие предохранители защищают участок цепи от токовых перегрузок и коротких замыканий. Разделяются на одноразовые предохранители и предохранители со сменными вставками. Используются и в промышленности и в быту. Существуют предохранители работающие на напряжении до 1кВ и так же высоковольтные предохранители установленные, работающие на напряжении выше 1000В (например, плавкие предохранители на трансформаторах собственных нужд подстанций 6/0,4 кВ). Удобство в эксплуатации, простота конструкции и легкость при замене обеспечили предохранителям очень большую распространенность.

Автоматические выключатели играют ту же роль, что и предохранители. Только по сравнению с ними имеют более сложную конструкцию. Но при этом пользоваться автоматическими выключателями гораздо удобнее. В случае возникновении, например, короткого замыкания в сети в следствии старения изоляции, автоматический выключатель отключит от питания повреждённый участок. При этом сам легко восстанавливается, не требует замены на новый и после проведения ремонтных работ будет снова защищать свой участок сети. Так же пользоваться выключателями удобно при проведении каких либо регламентных ремонтных работ.

Производятся автоматические выключатели с широким спектром номинальных токов. Что позволяет подобрать нужный практически под любую задачу. Работают выключатели на напряжении до 1 кВ и на напряжении свыше 1кВ (высоковольтные выключатели).

Высоковольтные выключатели, для обеспечения чёткого расцепления контактов и предотвращения появления дуги производятся вакуумными, наполненными инертным газом или маслонаполненными.

В отличии от плавких предохранителей автоматические выключатели производятся как для однофазных так и для трехфазных сетей. То есть существуют одно-, двух-, трех-, четырехполюсные выключатели контролирующие три фазы трехфазной сети.

Например, при появлении короткого замыкания на землю одной из жил питающего кабеля электродвигателя автоматический выключатель отключит питание на всех трех, а не на одной поврежденной. Так как после исчезновения одной фазы электродвигатель продолжил бы работу на двух. Что не допустимо, так как является аварийным режимом работы и может привести к преждевременному выходу его из строя. Автоматические выключатели производятся для работы с постоянным и переменным напряжением.

 

2.2 Трансформаторная подстанция цеха

 

Цеховые ТП могут быть встроенными, пристроенными и отдельно стоящими. На рис. 1.10 показана компоновка КТП, а на рис. 1.11 габаритные размеры встроенной трансформаторной подстанции на 10 кВ с двухтрансформаторной КТП. Отдельно стоящие ТП нерациональны и применяются вынужденно для электроснабжения некоторых цехов со взрывоопасной или агрессивной средой, а также на мелких предприятиях с небольшими разбросанными по территории объектами. Для пристроенных и встроенных ТП, если позволяют производственные условия, окружающая среда, условия пожарной безопасности и архитектуры, необходимо размещать трансформаторы снаружи цеха. Внутрицеховые ТП устанавливаются около колонн, в «мертвой» зоне перемещения кранов и специальных пролетах (в современных крупных совмещенных цехах) с учетом возможной реконструкции и замены технологического оборудования.

В основном число и мощность трансформаторов на ТП зависит от значения и графика суммарной нагрузки, но с учетом компенсации реактивной мощности, плотности нагрузки и категории надежности электроприемников. Цеховые ТП, если позволяет нагрузка и категория электроприемников, рекомендуется выполнять однотрансформаторными и в крайнем случае — двух-трансформаторными.


Рис. 1. Встроенная ТП с двухтрансформаторной КТП:
ВУСП — выпрямительное устройство сети постоянного тока; КРУ — комплектное распределительное устройство; ЭПП — электропомещение подстанции; ККУ — коммутационное контрольное устройство

Если основную нагрузку (80...85%) составляют электроприемники I и II категорий, на ТП должно быть не менее двух трансформаторов. На ТП устанавливается также не менее двух трансформаторов для приемников любой категории надежности, при следующих условиях:
суточный или годовой график нагрузок очень неравномерный, а работа цеха, предприятия односменная или сезонная, т. е. когда выгодно в ненагруженные часы (сезон) отключать один трансформатор;
лимитированы габаритные размеры ТП и оборудования;
возможен дальнейший рост нагрузок, а установка более мощного трансформатора в будущем невыгодна или невозможна.
Цеховые ТП могут иметь три и более трансформаторов в виде исключения в следующих случаях: при наличии мощных электроприемников, сосредоточенных в одном месте (прокатные станы, компрессорные и т.п.), для обеспечения питания которых недостаточно мощности двух трансформаторов; если невозможно рассредоточить ТП по условиям окружающей среды или размещения технологического оборудования (некоторые цеха нефтехимических производств, текстильные фабрики); при раздельном питании силовой и осветительной нагрузок, если их центры близки; если электроприемники резко различаются по характеру и режиму работы и не могут быть запитаны от общих трансформаторов (например, когда наряду с общей силовой и осветительной нагрузками имеются электросварочные установки значительной мощности).

Мощность трансформатора необходимо выбирать с таким расчетом, чтобы его загрузка соответствовала наиболее экономичному режиму, который в значительной степени зависит от стоимости потерь электроэнергии. Рекомендуются следующие степени загрузки трансформаторов цеховых ТП: 0,65...0,75 в случае преобладания электроприемников I и II категорий и наличии двух и более трансформаторов; ОД... 1,0 в случае преобладания электроприемников II и III категорий и наличии одного трансформатора;
0,9...0,95 в случае преобладания II и III категорий и наличии двух трансформаторов. При напряжении 380 В и плотности нагрузки до 0,3 кВА/м2 целесообразно применять трансформаторы мощностью до 1000 кВ • А, а при плотности нагрузки 0,3...0,5 кВА/м2 — трансформаторы мощностью 1000 или 1600 кВ-А. При плотности нагрузки более 0,5 кВА/м2 технико-экономически определяют, какой мощности целесообразно применять трансформатор: 1600 или 2500 кВ * А.
Мощность трансформаторов цеховых ТП выбирается по значениям максимальных нагрузок суточного графика с учетом компенсации их реактивной мощности, резервирования в послеаварийном режиме потребителей I и II категорий по шинам на 0,4; 0,66 кВ ТП или перемычки на 0,4; 0,66 кВ между соседними подстанциями с пропускной способностью 15...20% от Sp, а также с учетом перегрузочной способности трансформаторов в послеаварийном режиме.
Трансформаторы цеховых ТП с ударной резкопеременной нагрузкой выбираются по максимальной расчетной нагрузке на основании специальных расчетов.

Порядок выбора цеховых трансформаторов следующий:
определяется Sp или Рр любым способом, изложенным ранее, с учетом компенсации реактивной мощности на стороне низкого напряжения;
намечаются стандартные мощности трансформаторов для данной ТП (в основном в диапазоне 400... 1600 кВ - А) и их число в зависимости от общей мощности нагрузки, категории электроприемников и удельной плотности нагрузки; для двухтрансформаторных и резервированных однотрансформаторных подстанций проверяется коэффициент загрузки трансформаторов и ЛЭП в нормальном и послеаварийном режимах.
В послеаварийном режиме для трансформаторов допускаются перегрузки в зависимости от охлаждения и эквивалентной температуры окружающего воздуха, а также от продолжительности работы с перегрузкой в течение суток. Эти перегрузки определяются по паспорту, а более точно — по суточным графикам нагрузки за характерные сутки (зимние и летние). При проверке загрузки трансформаторов в послеаварийном режиме следует иметь в виду, что на период ликвидации аварии разрешается отключать часть потребителей III категории.
Число трансформаторов Nrp связано с расчетной нагрузкой Sp и их номинальной мощностью следующим образом:
где кзлр — коэффициент загрузки трансформатора; ЭЦ — экономически целесообразная номинальная мощность трансформатора.
Реактивная мощность QTp, протекающая через один трансформатор, определяется по условию минимума потерь активной мощности без участия активных сопротивлений кабельных линий с напряжением сети 10 кВ для группы из н трансформаторов (например, одного цеха) с одинаковой номинальной мощностью.

 

2.3Компенсирующее устройство

 

Для уменьшения реактивной мощности в сетях промышленных предприятий получили распространение конденсаторные установки.

Конденсаторная установка (КУ, или УКРМ - установка компенсации реактивной мощности) - согласно действующему ГОСТ 27389-87, это электроустановка, состоящая из конденсаторов и относящегося к ней вспомогательного электрооборудования (регулятора реактивной мощности, контакторов, предохранителей и т. д.).

Конденсаторы входят в состав любой установки компенсации реактивной мощности (нерегулируемой или автоматической) и используются для корректировки коэффициента мощности индуктивных потребителей (трансформаторов, электрических двигателей, ректификаторов) в электрических сетях для напряжений до 660 В.

Самые популярные трехфазные конденсаторы компенсации реактивной мощности состоят из цилиндрического алюминиевого корпуса, внутри которого смонтированы три однофазных конденсатора соединенные по схеме "треугольник" (см.рис. вариант а). Подключение осуществляется через три клеммы. Также существуют модели (например от Legrand) с шестью клеммами (см.рис. вариант б) они позволяют подключать контактор в разрыв треугольника. Что в свою очередь позволяет взять контактор меньшего номинала.

В корпусе конденсатора установлен диэлектрик с тремя полипропиленовыми слоями, металлизированными алюминием и цинком. Данное покрытие обеспечивает низкий уровень потерь и высокую устойчивость к высоким импульсным токам, а также способствует самовосстановлению конденсатора при пробое. В зависимости от величины рабочего напряжения полипропиленовая пленка имеет различную толщину. При этом слои металлизации выступают в роли проводников тока (т.е. обкладок), а полипропилен является диэлектриком. После выполнения необходимых технологических операций и прохождения контроля качества емкостные элементы (рулоны) помещаются в алюминиевые цилиндрические корпуса и заливаются полиуретановой смолой, нетоксичной и обладающей высокими экологическими свойствами.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-11-19 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: