Методы и средства обеспечения электробезопасности




Электробезопасность в соответствии с ГОСТ 12.1.019. должна обеспечиваться:

- безопасной конструкцией электроустановок;

- техническими способами и средствами защиты;

- организационными и техническими мероприятиями.

Обеспечение электробезопасности техническими способами и средствами предусматривает: защиту от случайного прикосновения к токоведущим частям и защиту от поражения электрическим током при прикосновении к металлическим нетоковедущим частям, которые могут оказаться под напряжением в результате повреждения изоляции. Для обеспечения защиты от случайного прикосновения к токоведущим частям необходимо применять следующие способы и средства: защитные оболочки; защитные ограждения (временные или стационарные); безопасное расположение токоведущих частей; изоляция токоведущих частей (рабочая, дополнительная, усиленная, двойная); изоляция рабочего места; малое напряжение; защитное отключение; предупредительная сигнализация, блокировка, знаки безопасности.

Для обеспечения защиты от поражения электрическим током при прикосновении к металлическим нетоковедущим частям, которые могут оказаться под напряжением в результате повреждения изоляции, применяют следующие способы: защитное заземление; зануление; выравнивание потенциала; система защитных проводов; защитное отключение; изоляция нетоковедущих частей; электрическое разделение сети; малое напряжение; контроль изоляции; компенсация токов замыкания на землю; средства индивидуальной защиты.

Рассмотрим более подробно некоторые технические средства защиты от поражения электрическим током.

Применение малого напряжения. В целях уменьшения опасности поражения электрическим током применяют номинальное напряжение -- не более 42 В, например, для питания ручных переносных ламп и светильников местного освещения в помещениях с повышенной опасностью и особо опасных, а также для питания электрифицированных ручных машин в особо опасных помещениях. При особо неблагоприятных условиях (сырые участки траншей, шахты, колодцы и т. п.) для питания ручных переносных ламп нужно применять напряжение 12 В. Ток малого напряжения получают от понижающих трансформаторов. Защита от случайного перехода высокого напряжения (380, 220 и 127 В) на обмотку низкого напряжения (42 или 12 В) осуществляется путем заземления вторичной обмотки и корпуса понижающего трансформатора.

Электрическая изоляция токоведущих частей. С течением времени в условиях химически активной среды или в других неблагоприятных условиях эксплуатации электроизоляционные свойства изоляции снижаются, поэтому сопротивление ее необходимо периодически контролировать.

Изоляцию подразделяют на рабочую (обеспечивает нормальную работу электроустановки и защиту от поражения электрическим током); дополнительную (дополнительную к рабочей на случай повреждения рабочей изоляции); усиленную (улучшенную рабочую изоляцию); двойную (состоящую из рабочей и дополнительной изоляции).

Оградительные устройства. Устройства, предотвращающие прикосновение или приближение на опасные расстояния к токоведущим частям в случаях, когда провода или токоведущие части электрооборудования не могут иметь изоляции (например, троллейные провода), размещают на расстоянии, недоступном для соприкосновения с ними человека (например, вверху); применяют также защитные ограждения, изготовленные из трудногорючих или негорючих материалов.

В общем случае ограждения и оболочки предназначены для предотвращения любого прикосновения к токоведущим частям электроустановки (ГОСТ Р 50571. 3-94) Если необходимо снять ограждение или вскрыть оболочку или ее части, это может быть сделано только:

- с помощью ключа или специального инструмента или

- после обесточивания токоведущих частей, защищенных этими ограждениями или оболочками и т.д.

электрический ток заземляющий проводник

Защита путем размещения вне зоны досягаемости предназначена только для предотвращения непреднамеренных прикосновений к токоведущим частям. Части электроустановки с разными потенциалами, доступные одновременному прикосновению, не должны находиться внутри зоны досягаемости. Две части считаются доступными одновременному прикосновению если они находятся на расстоянии не более 25 м друг от друга.

Предупредительная сигнализация, блокировка, знаки безопасности. Звуковой сигнал и красный свет лампы предупреждают о появлении опасности, например напряжения в электроустановках, зеленый свет оповещает о снятии этого напряжения.

Предупредительные плакаты, вывешиваемые на видных местах, подразделяют на предостерегающие или предупреждающие об опасности (например, «Стой, опасно для жизни»). Запрещающие плакаты предназначены для запрещения оперирования коммутационными аппаратами (например, «Не включать-- работают люди», «Не включать -- работа на линии»). Есть плакаты, напоминающие о каких-либо принятых мерах (например, «Заземлено»).

Для исключения ошибочных соединений и лучшей ориентации в электрических цепях электроустановок провода, шины и кабели имеют маркировку ввиде цифровых и буквенных обозначений и отличительную окраску. Блокирующие устройства защищают от электротравматизма путем автоматического разрыва электрической цепи перед тем, как рабочий может оказаться под напряжением. Так, при снятии защитного ограждения или открывании дверец установки, находящейся под напряжением, контакты разъединяются, отключая установку.

Средства защиты и предохранительные приспособления предназначены для защиты персонала от электротравм при работе на электроустановках. Защитные средства подразделяют на вспомогательные (очки, противогазы), ограждающие (временные переносные заземлители, щиты, изолирующие накладки) и изолирующие, которые, в свою очередь, подразделяют на основные и дополнительные. Основные защитные средства способны длительно выдерживать рабочее напряжение электроустановки, и ими можно прикасаться к токоведущим частям оборудования. При напряжении в установках более 1000 В в качестве защитных средств применяют изолирующие штанги, изолирующие и токоизмерительные клещи и указатели напряжения.

Если работы выполняют под напряжением в установках до 1000 В, кроме штанг и клещей используют диэлектрические перчатки, рукавицы и монтерский электроинструмент с изолированными ручками.

Дополнительные защитные средства применяют при использовании основных средств для усиления их изолирующих свойств. К таким защитным средствам при работе под напряжением более 1000 В относят диэлектрические перчатки, боты, ковры и изолирующие подставки. В установках под напряжением до 1000 В дополнительными защитными средствами являются диэлектрические ковры и галоши, а также изолирующие подставки.

Предохранительными приспособлениями являются предохранительные пояса, монтерские когти, лестницы.

Компенсация токов замыкания на землю. В данном случае между нейтралью и землей включают компенсационную катушку. Этот вид защиты применяют одновременно с защитным заземлением или отключением.

Выравнивание потенциалов -- метод снижения напряжений прикосновения и шага между точками электрической цепи, к которым можно одновременно прикасаться или на которых может одновременно стоять человек. Практически для этого устраивают контурное заземление, т. е. располагают заземлители по контуру вокруг заземленного оборудования.

Электрическое разделение сетей -- разделение их на отдельные электрически не связанные между собой участки с помощью разделяющего трансформатора. Такой трансформатор предназначен для отделения приемника энергии от первичной электрической сети и сети заземления. Безопасность заключается в том, что сети большой протяженности имеют большую емкость относительно земли и небольшие сопротивления изоляции. В этом случае человек, прикоснувшийся к токоведущим частям, попадает под действие фазного напряжения.

Защитное заземление -- устранение опасности поражения человека током в случае прикосновения его к нетоковедущим металлическим частям электроустановки, оказавшимся под напряжением.

Защитное заземление -- это преднамеренное электрическое соединение с землей (или ее эквивалентом) металлических нетоковедущих частей, которые могут оказаться под напряжением.

Рис.7. Принципиальная схема действия защитного заземления.

Принцип действия защитного заземления основан на снижении до безопасных значений напряжений шага, обусловленных замыканием на корпус. Снижают напряжение путем уменьшения потенциала заземленного оборудования за счет уменьшения сопротивления заземления.

При замыкании фазы 1 (рис. 7) на корпус электроустановки человек, прикоснувшийся к этому корпусу, попадает под фазное напряжение, опасное для жизни. При наличии заземляющего устройства сопротивление тела человека и заземлителя включаются в параллельные ветви, и при неизменном общем токе, т. е. при токе короткого замыкания I3 сила тока, проходящего через тело человека, будет равной Ih=I3(R3/Rh), ас учетом коэффициентов б1 - коэффициент напряжения прикосновения и б2 - коэффициент, учитывающий падение напряжении в дополнительных сопротивлениях цепи человека. Под напряжением прикосновения понимаем напряжение между двумя точками электрической цепи, которых одновременно касается человек.

Из этого равенства следует, что для уменьшения силы тока, проходящего через тело человека, необходимо уменьшить сопротивление заземлителя.

Для участка, к которому подключается человек, т. е. участок корпус -- земля как часть электрической цепи, применим закон Ома

где UK -- напряжение на корпусе, В; I3 -- ток замыкания на землю, A; R 3 -- сопротивление заземлителя, Ом.

Отсюда следует, что уменьшить напряжение до безопасной величины на корпусе, к которому прикасается человек, можно путем уменьшения сопротивления участка корпус -- земля. Уменьшают сопротивление этого участка снижением сопротивления заземлителя R 3.

Исследованиями установлено, что безопасное напряжение на корпусе не должно превышать 40В. Принимая ток короткого замыкания в размере 10 А (практически он не превышает нескольких ампер) при напряжении в сети до 1000В, необходимое сопротивление заземлителя должно быть порядка 4 Ом.

Защитное заземление устраивают в трехфазных трехпроводных сетях с изолированной нейтралью напряжением до 1000В, а выше 1000 В -- с любым режимом нейтрали. Заземлению подлежат электроустановки напряжением выше 42 В переменного тока в помещениях с повышенной опасностью и особо опасных, а также в наружных установках.

В отличие от защитного заземления рабочее заземление предназначено для обеспечения нормальных режимов работы электроустановки.

Не заземляют электроустановки, работающие при напряжении 42 В и ниже переменного тока, за исключением взрывоопасных установок, электроприемники с двойной изоляцией, корпуса различных электроизмерительных приборов.

Заземлять необходимо следующие элементы электроустановок: корпуса электрических машин, трансформаторов, аппаратов, светильников, переносных электроприемников, каркасы распределительных щитов, щитов управления, щитков и шкафов, металлические конструкции распределительных устройств, металлические оболочки кабелей и проводов, стальные трубы электропроводки и т. д.

Заземляющее устройство (рис. 7.) состоит из заземлителя 2, представляющего собой металлический проводник (один или несколько), находящийся в земле, и проводника 3, соединяющего заземляемые элементы электроустановки 1 с заземлителем 2.

В качестве заземлителей могут быть использованы находящиеся в соприкосновении с землей:

-- металлические стержни или трубы;

-- металлические полосы или проволока;

-- металлические плиты, пластины или листы;

-- фундаментные заземлители;

-- стальная арматура железобетона.

Эффективность заземлителя зависит от конкретных грунтовых условий, и поэтому в зависимости от этих условий и требуемого значения сопротивления растеканию должны быть выбраны количество и конструкция заземлителей. Значение сопротивления растеканию заземлителя может быть рассчитано или измерено. Наименьшие размеры заземляющих проводников, проложенных в земле представлены в табл. 2.

Таблица 2. Наименьшие размеры заземляющих проводников

 
Заземляющие проводники Сечение, мм2
Защищенные от коррозии:  
--имеющие механическую защиту Рассчитываются или выбираются согласно требованиям ГОСТ Р 50571.10-96
--не имеющие механической защиты 16 по меди и стали
Не защищенные от коррозии и не имеющие механической защиты 25 по меди, 50 по стали

Заземление стационарного оборудования. Оборудование 1, установленное в помещении 5, заземляют по схеме, показанной на рис. 8. Это оборудование соединяют с внутренним заземляющим контуром 7 из стальной полосы сечением не менее 48 мм2 с помощью заземляющего проводника 2 сечением не менее 24 мм2.

Внутренний заземляющий контур проводниками 3 соединяют с наружным контуром, состоящим из труб 6 (или стержней) и заземляющего магистрального проводника 4 между ними. Наружный заземляющий контур может иметь вид треугольника 5.

Заземление электроустановок напряжением более 1000 В. Передвижные строительные машины с электроприводом напряжением свыше 1000 В (например, экскаватор)

Рис. 8. Схема заземления стационарного оборудования

Зануление -- превращение замыкания на корпус электроустановки в однофазное короткое замыкание, в результате чего срабатывает токовая защита и отключает поврежденный участок.

Зануление, как и защитное заземление, защищает человека от поражения электрическим током при появлении на корпусе опасного напряжения.

Защиту занулением применяют в трехфазных четырехпроводных сетях с заземленной нейтралью напряжением до 1000В. В строительстве и промышленности эти сети имеют напряжение 380/220 и 220/127 В, а иногда 660/380 В. Кроме того, зануляют однофазные сети переменного тока с заземленным выводом. Зануление (рис. 9.) есть преднамеренное электрическое соединение 1 с нулевым защитным проводником 2 металлических нетоковедущих частей установки 7, которые могут оказаться под напряжением 6.

Действие защиты занулением основано на том, что при появлении на металлических частях электроустановки 7 опасного напряжения, в результате замыкания на корпус, возникает короткое замыкание между фазным 3 и нулевым защитным 2 проводниками. Возникшее короткое замыкание 4 приводит к появлению большого тока. Этот ток в свою очередь приводит к срабатыванию токовую защиту 5 (для нее он является максимальным током) и тем самым автоматически отключается от электросети электроустановка 7. За время от замыкания на корпус и до отключения электроустановки от сети (т. е. в аварийный период) безопасность от поражения током обеспечивается заземляющим устройством 8 с сопротивлением Ro, которое действует как защитное.

Автоматической защитой 5 могут служить плавкие предохранители, автоматы и устройства защитного отключения, магнитные пускатели и др., срабатывающие в доли секунды.

Рис 9. Принципиальная схема действия защитного зануления.

Повторное заземление Rn нулевого провода защищает человека от поражения током в случае замыкания фазы на корпус и одновременного обрыва нулевого провода. Такое заземление устраивают через каждые 250 м, а также на концах линий и ответвлений длиной более 200 м. Сопротивление каждого из повторных заземлений принимают не более 10 Ом.

Защитное отключение -- быстродействующая защита, обеспечивающая автоматическое отключение электроустановки при возникновении в ней опасности поражения током.

В настоящее время внедрение устройств защитного отключения (УЗО) ведется весьма интенсивно. Применение УЗО целесообразно и оправдано по социальным и экономическим причинам в электроустановках всех возможных видов, самого различного назначения. Затраты на установку УЗО несоизмеримо меньше возможного ущерба (гибели и травм человека, пожары и их последствия) произошедшего из-за неисправностей электропроводки и электрооборудования. Исключение составляют электроустановки, не допускающие по технологическим причинам перерыва в электроснабжении. В таких установках для защиты человека от поражения электротоком целесообразно применять другие электрозащитные меры (контроль изоляции, разделительные трансформаторы и др.). УЗО является надежной защитой от возгораний и пожаров, возникающих на объектах вследствие возможных повреждений изоляции, неисправностей электропроводки и электрооборудования.

В основе действия защитного отключения лежит принцип ограничения продолжительности протекания тока через тело человека (за счет быстрого отключения) при непреднамеренном прикосновении его к элементам электроустановки, находящимся под напряжением. На рис. 10. представлены области физиологического действия переменного электрического тока и времятоковые характеристики УЗО.

Рис 10. График областей физиологического действия на человека переменного тока (50-60 Гц) и времятоковые характеристики УЗО:

1 - неотпускающие токи;

2 - ощутимые токи, но не вызывающие физиологических нарушений;

3 - ощутимые токи, но не вызывающие фибрилляции сердца;

4 - ощутимые токи, вызывающие опасность фибрилляции сердца (вероятность < 5%);

5 - ощутимые токи, вызывающие опасность фибрилляции сердца (вероятность < 50%);

6 - ощутимые токи, вызывающие опасность фибрилляции сердца (вероятность > 50%);

А - () и В () - времятоковые характеристики УЗО.

Действие защитного отключения основано на том, что при возникновении в электроустановке опасности поражения человека током установка автоматически отключается от сети за время, неопасное для человека. Такая опасность для человека может возникнуть при непреднамеренном прикосновении его к элементам электроустановки, находящимся под напряжением, замыкании фазы на корпус электроустановки, при снижении уровня сопротивления изоляции.

Основные функциональные блоки УЗО представлены на рис. 4.51. В абсолютном большинстве УЗО в качестве датчика дифференциального тока используются трансформаторы тока 1. В нормальном режиме при отсутствии дифференциального (тока утечки) в силовой цепи протекает рабочий ток нагрузки, пусковой орган 2 находится в состоянии покоя. При прикосновении человека к открытым токопроводящим частям или корпусу электроустановки Rн по фазному проводнику через УЗО кроме тока нагрузки I1 протекает дополнительный ток утечки I?. Если этот ток превышает установленное значение, срабатывает пусковой орган 2 и воздействует на исполнительный механизм 3. Исполнительный механизм, состоящий из пружинного привода, спускового механизма и группы силовых контактов, размыкает электрическую цепь. В результате защищаемая установка обесточивается.

Рис. 11. Принцип действия УЗО.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2022-06-20 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: