Раздел 2. Применение МГЭ в расчетах сопротивления




Бипирамидальных свай

 

2.1. Алгоритм определения сопротивления бипирамидальных свай вертикальным нагрузкам с использованием МГЭ

 

Алгоритм расчета свай с применением МГЭ состоит из следующих основных этапов:

- дискретизация (разбивка) поверхности фундамента в вытрамбованном котловане (боковой поверхности и нижнего конца);

- определение коэффициентов матриц влияния сил действующих на поверхности фундамента на точки (узлы) дискретизации с использованием фундаментального решения Миндлина [41];

- формирование глобальной матрицы коэффициентов влияния и свободных членов (использования граничных условий);

- решение системы линейных алгебраических уравнений т. е. боковой поверхности и в плоскости нижнего конца фундамента;

- определение сопротивления грунта на боковые поверхности и под нижним концом фундамента в вытрамбованном котловане, а так же общего сопротивления фундамента при заданной осадке.

 

2.2. Расчет бипирамидальных свайна ЭВМ

 

2.2.1. Структура программы

Расчет сопротивления бипирамидальных свай при действии вертикальной нагрузки реализован на алгоритмическом языке Turbo Pascal [52] с помощью программы sv63m.pas, разработанной в Винницком государственном техническом университете. Программа sv63m.pas состоит из следующих процедур:

INPUT - эта процедура считывает исходные данные: геометрические характеристики фундамента, свойства грунта, заданную осадку фундамента.

MATR - вычисляются коэффициенты влияния матрицы [K]ij и свободные коэффициенты wedi.

CAUSP - решается система линейных алгебраических уравнений, в результате определяются неизвестные значения напряжений на боковой поверхности и под нижним концом фундамента.

OUTPUT - определяются касательные напряжения по боковой поверхности фундамента и нормальные напряжения под нижним концом, а так же радиальные напряжения действующие на боковую поверхность фундамента; определяются сосредоточенные силы действующие на i-х элементах боковой поверхности (силы трения) и нижнего конца фундамента - нормальные силы, сумма соответствующих сил дает значения общего усилия по боковой поверхности и под нижним концом, а их сумма общее сопротивление фундамента.

В программе используются следующие основные переменные:

NE1:= NEA + NEB + NEC - число граничных элементов на боковой поверхности фундамента;

NN1 - число граничных узлов на боковой поверхности фундамента;

NE2 - число граничных элементов в плоскости нижнего конца фундамента;

NN2 - число граничных узлов в плоскости нижнего конца фундамента;

NE3 - число граничных элементов по окружности фундамента;

NN3 - число граничных элементов по окружности фундамента;

ls1 - длина первого (верхнего) участка фундамента;

ls2 - длина второго (среднего) участка фундамента;

ls3 - длина третьего (нижнего) участка фундамента;

ls:= ls1 + ls2 +ls3 - общая длина фундамента;

E - модуль деформации грунта;

mu - коэффициент Пуассона для грунта;

ed1 - вертикальные перемещения узлов боковой поверхности фундамента;

ed2 - горизонтальные перемещения узлов боковой поверхности фундамента;

ed3 - вертикальные перемещения узлов нижнего конца фундамента;

ar1 - радиус фундамента в верхнем сечении I первого участка;

ars - радиус фундамента в нижнем сечении среднего участка;

arN - величина радиуса фундамента на уровне нижнего конца фундамента;

NE = NE1 + NE2 - число граничных элементов на поверхности фундамента;

NK1:= NE1 + 1 - номер элемента матрицы К из

NEE = 2 * NE1 - номер элемента глобальной матрицы К

NC2:= NЕЕ +1 - номер элемента глобальной матрицы К.

tga1 - тангенс угла наклона боковой поверхности (грани) среднего участка фундамента;

tga2 - тангенс угла наклона боковой поверхности нижнего участка фундамента;

NEA - число граничных элементов на первом (верхнем) участке фундамента в вытрамбованном котловане;

NEB - число граничных элементов на втором участке фундамента;

NEC - число граничных элементов на третьем (нижнем) участке фундамента;

HH1 - шаг граничных узлов на первом участке;

HH2 - шаг граничных узлов на втором участке;

HH3 - шаг граничных узлов на третьем участке;

inz [i,1], inz [i,2] - связность граничных элементов боковой поверхности фундамента;

inc [i,1], inc [i,2] - связность элементов нижнего конца фундамента;

int [i,1], int [i,2] - связность элементов окружности по боковой поверхности фундамента и в плоскости нижнего конца фундамента (в точках источников);

 

 

2.2.2. Дискретизация боковой поверхности и нижнего конца фундамента

 

 

1

2 I

4 II

6

9 III

 

 

 

 

Рис. 2.1. Схема дискретизации боковой поверхности

фундамента в вытрамбованном котловане

 

t, t

1 2 3 4 5 6 (NN2)

0 ar

1 2 3 4 5 (NE2)

 

Рис. 2.2. Схема дискретизации нижнего конца фундамента

 

По длине фундамента в вытрамбованном котловане разбивается на три участка: верхний, средний (II), нижний (III) (рис. 2.1).

Количество граничных элементов задается в пределах каждого участка соответственно: NEA, NEB, NEC. Кроме того, для каждого участка задается длина (ls1, ls2, ls3). Угол наклона боковой поверхности участков II и III задан тангенсом угла наклона (tga1 и tga2) (см. рис. 2.3).

a1

a2

Рис. 2.3.

 

При известных длине участков и количестве граничных элементов на них определяются коэффициенты i-узлов по длине фундамента:

Z[i] = Z[i-1] + HH1 - I участок;

Z[i] = Z[i-1] + HH2 - II участок;

Z[i] = Z[i-1] + HH3 - II участок,

где - шаг граничных узлов на боковой поверхности фундамента в вытрамбованном котловане.

Узлы qi при обходе граничных элементов по окружности при заданном числе элементов NE3 и диапазона изменения угла q = 0...p определяем по формуле (см. рис. 2.4):

Ai = Ai-1 + H3,

где H3 = p/NE3 - шаг граничных узлов по окружности радиус которой, равен радиусу узла в точке приложения (j).

p/2

 

q

p 0

 

 

Рис. 2.4.

 

Радиус i-го узла на боковой поверхности фундамента в вытрамбованном котловане определим при известных его значениях ar1, ars, arN и тангенсах угла наклона tga1, tga2 по формуле

I участок

ar[i]=ar1;

II участок

ar[i]=ar[i-1] - tga1 * HH2;

III участок

ar[i]=ar[i-1] - tga1 * HH3.

Координаты узлов в плоскости нижнего конца фундамента определим из следующих соотношений (см. рис. 2.5)

координат по длине фундамента Z[i]=ls;

(ls - общая длина фундамента в вытрамбованном котловане),

координат в радиальном направлении ar[i]=ar[i+1] + H2,

где H2 - шаг узлов, находящихся на нижнем конце фундамента.

 

ar[NE1 + 1]

ar[NE1 + 2]

ar[NE + 1]=0

Рис. 2.5. Схема узлов на нижнем конце фундамента

 

В работе использовано понятие "связность элементов". Так как производится дискретизация поверхности фундамента в условиях осессимметричной задачи, то граничные элементы представлены прямыми линиями находящимися между граничными узлами и каждый граничный элемент, определяется если задать узлы которые его ограничивают (рис. 2.6).

2

i

Рис. 2.6. Схема к понятию связности элементов

 

В данной работе для наглядности введены отдельно связности i-х элементов на боковой поверхности фундамента, в плоскости нижнего конца, и по окружности фундамента:

inz[i,1] inz[i,2],

inc[i,1] inc[i,2],

int[i,1] int[i,2],

где i - номер граничного элемента;

1 , 2 - номера граничных узлов, окружающих связывающий i-й элемент (см. рис. 2.6).

 

2.2.3. Формирование матрицы коэффициентов влияния и свободных членов СЛАУ

При формировании коэффициентов глобальной матрицы влияния, отражающих зависимость перемещения точки наблюдения (i), когда источник возмущения находится в точке (j) используется решение Миндлина для силы приложений внутри упругого полупространства. Иногда для зависимости, когда действует единичная сила, эти решения называют фундаментальными. Для вертикальной силы Рв=1 зависимость для перемещений KW, когда точка наблюдения имеет координаты В(z,r), а источник возмущения находится на оси Z (радиальная координата равна нулю) на глубине с, запишется в виде:

с 0 0

r

с N

Рв

x(с,0) r B(z,r)

Z

Рис. 2.7. Схема обозначений в формуле Миндлина для сосредоточенной силы Рв, приложенной внутри упругого полупространства

(2.1)

где

(2.2)

(2.3)

G - модуль сдвига грунта;

E - модуль деформации грунта;

v - коэффициент Пуассона грунта.

KW - вертикальное перемещение точки В при действии вертикальной силы Рв=1 в точке x(0,с).

Применение решения Миндлина к задаче о сопротивлении фундамента вертикальной нагрузке состоит в том, что точка приложения силы и точка наблюдения, в которой возникают вертикальные перемещения находятся на боковой поверхности или на нижнем конце. В связи с этим в формуле (2.1) выражения для R1 и R2 принимают вид:

(2.4)

(2.5)

где

(2.6)

r - горизонтальная компонента расстояния от оси Z до точки B;

arc - горизонтальная компонента расстояния от оси Z до точки x;

r1 - горизонтальная компонента расстояния от точки В (точки наблюдения) до точки x (источник, место приложения силы);

R2 - расстояние от точки x' (фиктивный источник) до точки B;

R1 - расстояние от точки x (источник) до точки B.

x(с,arc)

q B(z,r)

 

a

Рис. 2.8. Схема к определению координат точки приложения x(с,arc) и точки наблюдения B(z,r)

 

При определении коэффициентов влияния глобальной матрицы К учитываются различные варианты расположения источников (сил) и точек наблюдения.


dc

 

· i

 

 

Рис. 2.9. Схема к интегрированию решения Миндлина

(матрица KSS)

 

- источники расположены на боковой поверхности фундамента и точки наблюдения так же находятся на боковой поверхности. Для наглядности рассмотрим фундамент в вытрамбованном котловане (см. рис. 2.1) боковая поверхность которого разбита на j элементов (j=1,NE1) и имеются точки наблюдения i, находящиеся посредине граничных элементов. При вычислении коэффициента влияния входящего в матрицу [KSS]ij осуществляется интегрирование решения Миндлина по окружности находящейся на глубине с и радиусом arc и интегрирования полученных значений решения по высоте j -го элемента. Таким образом элементы подматрицы [KSS]ij определяются

(2.7)

где (2.8)

 

 

· i

 

j

·

 

Рис. 2.10. Схема к интегрированию решения Миндлина

(матрица KBS)

- источники находятся на нижнем конце фундамента, а точки наблюдения на боковой поверхности. Количество элементов на нижнем конце j (1,NE2), а количество точек на боковой поверхности i=1,NE1. Интегрирование решения Миндлина выполняется по граничных элементам нижнего конца, представленных в виде кольца (рис. 2.10). При этом формируются коэффициенты подматрицы [KBS]ij

(2.9)

где (2.10)

r - горизонтальная компонента расстояния от оси Z до точки В;

eps - горизонтальное расстояние от оси Z до точки источника x;

de - ширина граничного элемента j нижнего конца фундамента (ширина кольца).

 

i

· ·

 

 

Рис. 2.11. Схема к интегрированию решения Миндлина

(матрица KSB)

 

Если источники находятся на боковой поверхности фундамента, а точки наблюдения на нижнем конце. здесь формируются коэффициенты подматрицы [KSB]ij, i=1,NE2 j=1,NE1, которые учитывают влияние загружения боковой поверхности фундамента на перемещение элементов нижнего конца

(2.11)

где (2.12)

 

j (элемент j)

 

 

 

i (точка наблюдения i)

· ·

 

 

Рис. 2.12. Схема к интегрированию решения Миндлина

матрицы (КВВ)

 

Последний вариант взаимодействия частей фундамента, когда источники находятся на нижнем конце фундамента, а точка наблюдения так же находится на нижнем конце фундамента.

Для вычисления коэффициентов влияния загружения элементов нижнего конца (j=1,NE2) на точки наблюдения, находящиеся посередине элементов нижнего конца, вычисляется двойной интервал

(2.13)

где

Если учитываются вертикальные перемещения грунта примыкающего к поверхности фундамента, только от действия вертикальных сил, приложенных на боковой поверхности (KSS, KSB) и на нижнем конце (KBS, KBB), то глобальная матрица К имеет вид

(2.14)

Система алгебраических уравнений для определения неизвестных напряжений на боковой поверхности и под нижним концом записывается следующим образом

(2.15)

где fsb - неизвестные напряжения на поверхности фундамента;

wed - вектор-столбец единичных перемещений узлов поверхности фундамента. В случае, если принять сваю абсолютно жесткой (т. е. несжимаемой), то перемещения всех узлов будут одинаковыми. В данной работе компоненты вектора-столбца wed принимались равными осадке фундамента при которой график зависимости "нагрузки-осадки" имеет прямолинейный вид. Как показывает анализ опытных данных для призматических свай такая осадка равна 0,01 м, для пирамидальных и фундаментов в вытрамбованном котловане - 0,015..0,020 м.

Если учитывать, что на боковую поверхность фундамента действуют радиальные напряжения s2, то глобальная матрица [K] будет содержать девять подматриц и уравнение равновесия (2.15) примет вид:

(2.16)

где KRS - матрица, которая содержит коэффициенты влияния на вертикальные перемещения узлов боковой поверхности фундамента, при загружении элементов боковой поверхности радиальными напряжениями s2 (sigm2);

KSU - матрица, коэффициенты которой отражают связь между горизонтальными перемещениями узлов боковой поверхности фундамента, когда боковая поверхность загружена вертикальными напряжениями;

KRU - матрица содержащая коэффициенты влияния, которые отражают зависимость между горизонтальными перемещениями узлов боковой поверхности фундамента при загружении элементов боковой поверхности горизонтального напряжения s2;

KBU - матрица, коэффициенты которой отражают зависимость горизонтальных перемещений узлов боковой поверхности фундамента при загружении элементов нижнего конца вертикальными напряжениями s1;

KRB - матрица, коэффициенты которой отражают связь между вертикальными перемещениями узлов нижнего конца фундамента при загружении элементов боковой поверхности радиальными напряжениями s2.

{fsb} - вектор-столбец, содержащий неизвестные: касательные напряжения на боковой поверхности фундамента t, горизонтальные напряжения на боковой поверхности фундамента s2 и вертикальные напряжения на нижнем конце фундамента s1;

- вектор-столбец, содержащий заданные вертикальные перемещения узлов боковой поверхности фундамента ed1; горизонтальные перемещения узлов боковой поверхности ed2 (если свая не сжимается ed2=0); вертикальные перемещения узлов нижнего конца фундамента ed3.

Фундаментальное решение Миндлина в матрицах KRS и KRB имеет следующее выражение:

 

(2.17)

где

(2.19)

(2.20)

x = r×cosq - arc; (2.21)

y = -r×sinq. (2.22)

Коэффициенты матрицы KRS вычисляются с использованием фундаментального решения Миндлина KW3 и интегрирования выражения

(2.23)

где r = arz. (2.24)

Коэффициенты матрицы KRB вычисляются с использованием фундаментального решения Миндлина KW3 и интегрирования выражения

(2.25)

где (2.26)

При вычислении коэффициентов матриц KSU и KBU используется решение Миндлина

(2.27)

где R1, R2, r1 - определяются по формулам (2.4), (2.5), (2.6).

Коэффициенты матрицы KSU вычисляются интегрированием выражения

(2.28)

где (2.29)

Коэффициенты матрицы KBU равны интегралу

(2.30)

где (2.31)

Фундаментальное решение Миндлина в матрице KRU определяется формулой

 

(2.32)

где R1, R2, x, y - определяются по формулам (2.19), (2.20), (2.21), (2.22).

 

Коэффициенты матрицы KRU определяются интегралом

(2.33)

где r = arz. (2.34)

 

2.2.4. Определение напряжений на поверхности фундамента

Когда сформирована глобальная матрица К и задан вектор-столбец

(2.35) решается система алгебраических уравнений (2.16) методом Гаусса с помощью процедуры GAUSP, в результате получим значения напряжений t и s2 в узлах боковой поверхности и напряжение s1 в узлах нижнего конца фундамента.

 

2.2.5. Определение общего сопротивления фундамента

 

Усилия на элементах боковой поверхности фундамента получим

(2.36)

а усилия на элементах нижнего конца

(2.37)

Суммарное значение силы трения определяется

(2.38)

а сила под нижним концом

(2.39)

Общее сопротивление фундамента при заданной осадке r = ed1 равно

Рс = Рб + Р0; (2.40)

Таким образом в результате применения изложенной методики расчета по методу граничных элементов с использованием решения Миндлина можно определить общее сопротивление фундамента в вытрамбованном котловане при заданной осадке.




Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-03-31 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: