Пример 6. Построить точки пересечения М и N прямой с поверхностью пирамиды (рисунок 8-6).
Чтобы найти точки пересечения необходимо на поверхности многогранника построить конкурирующую с l ломаную линию и определить их взаимное положение.
Построим, например, фронтально-конкурирующую ломаную линию t. Пересечение l и t на виде сверху определяет точки пересечения М и N прямой l с поверхностью пирамиды. Находим эти точки на виде спереди.
Видимость точек М и N определяем по видимости граней которым они принадлежат. Точка М принадлежит видимой грани ASС, значит она и участок прямой влево от т. М - видимы. Точка N принадлежит невидимой грани SСВ, значит участок вправо от т. М до контура пирамиды будет невидим. На виде спереди эти грани видны, поэтому и прямая l, кроме участка МN, будет видна.
Пример 7. Построить точки пересечения М и N прямой l с поверхностью вращения (рисунок 8-7).
Построим на поверхности вращения линию t, фронтально-конкурирующую с прямой l. Ее изображение на виде сверху построено по точкам (метод принадлежности точки и поверхности).
Видимость точек М и N определена по видимости участков поверхности вращения. На виде сверху видна вся поверхность, значит т.т. М и N видны, видна и прямая l (кроме участка MN).
На виде спереди т. М видна, т. N не видна, т.к. лежит на поверхности за главным меридианом.
При построении конкурирующей линии необходимо стремиться к тому, чтобы эта линия была графически простой, что упрощает решение задачи.
Иногда с целью упрощения решения задачи прибегают к построению дополнительного вида (рисунок 8-8). Конкурирующая линия на поверхности сферы – окружность, которая на любом из видов изображается эллипсом.
|
Чтобы не строить по точкам эллипс, построим дополнительный вид по направлению горизонтали h, на нем конкурирующая линия изобразится окружностью. Здесь точки пересечения находятся легко.
ВЗАИМНОЕ ПОЛОЖЕНИЕ ДВУХ ПЛОСКОСТЕЙ
Две плоскости в пространстве могут:
· совпадать друг с другом;
· быть параллельными;
· пересекаться.
При совпадении плоскостей любая прямая одной плоскости будет совпадать с какой-либо прямой другой плоскости.
Параллельность плоскостей
Если две плоскости параллельны, то всегда в каждой из них можно построить по две пересекающиеся прямые линии так, чтобы прямые одной плоскости были соответственно параллельны двум прямым другой плоскости, (рисунок 8-9).
Это служит основным признаком для определения параллельности плоскостей, а также для построения двух параллельных плоскостей.
Рассмотрим применение этого признака на конкретном примере.
Пример 1. Построить плоскость, проходящую через т. М и параллельную заданной плоскости Б (а//b), (рисунок 8-10).
Для построения плоскости, параллельной заданной, сначала на плоскости Б построим пересекающиеся прямые, для чего проведем в плоскости Б произвольную прямую m. Затем проведем через т. М прямые с//а и d//m. Пересекающиеся прямые c и d задают искомую плоскость.
Пересечение плоскостей
Пересекающиеся плоскости имеют одну общую линию - линию пересечения. Для построения ее достаточно определить две точки или одну точку и направление линии пересечения.
Для построения линии пересечения двух плоскостей в общем случае необходимо знать способ построения. Однако некоторые задачи решаются исходя лишь из пространственного представления (путем моделирования).
|
Все задачи на пересечение плоскостей и поверхности плоскостью можно разделить на три типа.
Первый тип задач - плоскость имеет вырожденный вид.
Пример 1. Построим линию пересечения двух наклонных плоскостей Б и Д (рисунок 8-11).
Поскольку обе плоскости имеют вырожденный вид спереди (они перпендикулярны фронтальной плоскости), то и линия их пересечения тоже будет иметь вырожденный вид, т.к. и она будет перпендикулярна к фронтальной плоскости На виде спереди линия пересечения изображается точкой К, находящейся на пересечении изображений плоскостей Б и Д, а на виде сверху - прямой, параллельной линиям связи.
Пример 2. Построить линию пересечения наклонной Б и вертикальной Д плоскостей (рисунок 8-12).
Каждая из плоскостей имеет вырожденный вид - наклонная пл. Б -на виде спереди; вертикальная пл. Д- на виде сверху. А так как линия пересечения принадлежит каждой из них, то на виде спереди она будет совпадать с изображением наклонной, а на виде сверху - с изображением вертикальной плоскости (см. свойства плоскостей перпендикулярных плоскостям уровня).
Пример 3. Построить линию пересечения наклонной плоскости Б и плоскости общего положения Д (DАВС), (рисунок 8-13).
Поскольку наклонная плоскость на виде спереди имеет вырожденный вид, то линия пересечения плоскостей на этом виде будет совпадать с изображением наклонной плоскости (Б=К).
Учитывая принадлежность линии пересечения К и второй плоскости Д, с помощью точек 1 и 2 находим ее на виде сверху.
|
Видимость элементов определяем моделируя положение плоскостей в пространстве. На виде сверху невидима часть 1-С-2 треугольника, т.к. находится под (ниже) наклонной плоскости Б.
Второй тип задач - задачи, где плоскости не имеют вырожденных видов. Такие задачи можно решить только освоив способ построения линий пересечения, о чем речь пойдет ниже.
Известно, что линией пересечения двух плоскостей является прямая, для построения которой достаточно определить две точки, общие для обеих поверхностей (или одну точку и направление линии пересечения).
Чтобы найти линию пересечения двух плоскостей общего положения, надо на этих плоскостях провести две пары конкурирующих линий и найти их точки пересечения, которые и определяют положение точки пересече н ия (рисунок 8-14).
Здесь показано построение линии пересечения двух плоскостей Б и Д с помощью двух пар конкурирующих линий l=m и с=d. Если конкурирующие прямые первой пары оказались параллельными (рисунок 8-14б, l=m), то следует взять вторую пару конкурирующих прямых непараллельных первой. В этом случае линия пересечения будет проходить через полученную т. М параллельно конкурирующим прямым l=m первой пары.
Пример 4. Построить линию пересечения плоскостей общего положения Б (а//b) и Д (c // d ), ( рисунок 8-15).
Проведем пару фронтально-конкурирующих прямых t1 =t2. Пусть t1 принадлежит плоскости Б, a t2 - плоскости Д. Прямые t1 и t2 пересекаются в т. М (это следует из вида сверху), первой точке линии пересечения плоскостей.
Для построения второй точки линии пересечения -N, проведем вторую пару фронтально-конкурирующих прямых t3=t4 параллельно первой. Полученные точки M и N соединим, это и есть линия пересечения плоскостей k.
О перпендикулярности плоскостей речь пойдет ниже.