Третий тип задач - прямая и поверхность не имеют вырожденных видов




Пример 6. Построить точки пересечения М и N прямой с поверхностью пирамиды (рисунок 8-6).

Чтобы найти точки пересечения необходимо на поверхности многогранника построить конкурирующую с l ломаную линию и определить их взаимное положение.

Построим, например, фронтально-конкурирующую ломаную линию t. Пересечение l и t на виде сверху определяет точки пересечения М и N прямой l с поверхностью пирамиды. Находим эти точки на виде спереди.

Видимость точек М и N определяем по видимости граней которым они принадлежат. Точка М принадлежит видимой грани ASС, значит она и участок прямой влево от т. М - видимы. Точка N принадлежит невидимой грани SСВ, значит участок вправо от т. М до контура пирамиды будет невидим. На виде спереди эти грани видны, поэтому и прямая l, кроме участка МN, будет видна.

 

Пример 7. Построить точки пересечения М и N прямой l с поверхностью вращения (рисунок 8-7).

Построим на поверхности вращения линию t, фронтально-конкурирующую с прямой l. Ее изображение на виде сверху построено по точкам (метод принадлежности точки и поверхности).

Видимость точек М и N определена по видимости участков поверхности вращения. На виде сверху видна вся поверхность, значит т.т. М и N видны, видна и прямая l (кроме участка MN).

На виде спереди т. М видна, т. N не видна, т.к. лежит на поверхности за главным меридианом.

При построении конкурирующей линии необходимо стремиться к тому, чтобы эта линия была графически простой, что упрощает решение задачи.

Иногда с целью упрощения решения задачи прибегают к построению дополнительного вида (рисунок 8-8). Конкурирующая линия на поверхности сферы – окружность, которая на любом из видов изображается эллипсом.

Чтобы не строить по точкам эллипс, построим дополнительный вид по направлению горизонтали h, на нем конкурирующая линия изобразится окружностью. Здесь точки пересечения находятся легко.


ВЗАИМНОЕ ПОЛОЖЕНИЕ ДВУХ ПЛОСКОСТЕЙ

Две плоскости в пространстве могут:

· совпадать друг с другом;

· быть параллельными;

· пересекаться.

При совпадении плоскостей любая прямая одной плоскости будет совпадать с какой-либо прямой другой плоскости.

Параллельность плоскостей

Если две плоскости параллельны, то всегда в каждой из них можно построить по две пересекающиеся прямые линии так, чтобы прямые одной плоскости были соответственно параллельны двум прямым другой плоскости, (рисунок 8-9).


Это служит основным признаком для определения параллельности плоскостей, а также для построения двух параллельных плоскостей.

Рассмотрим применение этого признака на конкретном примере.

Пример 1. Построить плоскость, проходящую через т. М и параллельную заданной плоскости Б (а//b), (рисунок 8-10).

Для построения плоскости, параллельной заданной, сначала на плоскости Б построим пересекающиеся прямые, для чего проведем в плоскости Б произвольную прямую m. Затем проведем через т. М прямые с//а и d//m. Пересекающиеся прямые c и d задают искомую плоскость.


Пересечение плоскостей

Пересекающиеся плоскости имеют одну общую линию - линию пересечения. Для построения ее достаточно определить две точки или одну точку и направление линии пересечения.

Для построения линии пересечения двух плоскостей в общем случае необходимо знать способ построения. Однако некоторые задачи решаются исходя лишь из пространственного представления (путем моделирования).

Все задачи на пересечение плоскостей и поверхности плоскостью можно разделить на три типа.

Первый тип задач - плоскость имеет вырожденный вид.

Пример 1. Построим линию пересечения двух наклонных плоскостей Б и Д (рисунок 8-11).

Поскольку обе плоскости имеют вырожденный вид спереди (они перпендикулярны фронтальной плоскости), то и линия их пересечения тоже будет иметь вырожденный вид, т.к. и она будет перпендикулярна к фронтальной плоскости На виде спереди линия пересечения изображается точкой К, находящейся на пересечении изображений плоскостей Б и Д, а на виде сверху - прямой, параллельной линиям связи.

Пример 2. Построить линию пересечения наклонной Б и вертикальной Д плоскостей (рисунок 8-12).

Каждая из плоскостей имеет вырожденный вид - наклонная пл. Б -на виде спереди; вертикальная пл. Д- на виде сверху. А так как линия пересечения принадлежит каждой из них, то на виде спереди она будет совпадать с изображением наклонной, а на виде сверху - с изображением вертикальной плоскости (см. свойства плоскостей перпендикулярных плоскостям уровня).


 

Пример 3. Построить линию пересечения наклонной плоскости Б и плоскости общего положения Д (DАВС), (рисунок 8-13).

Поскольку наклонная плоскость на виде спереди имеет вырожденный вид, то линия пересечения плоскостей на этом виде будет совпадать с изображением наклонной плоскости (Б=К).

Учитывая принадлежность линии пересечения К и второй плоскости Д, с помощью точек 1 и 2 находим ее на виде сверху.

Видимость элементов определяем моделируя положение плоскостей в пространстве. На виде сверху невидима часть 1-С-2 треугольника, т.к. находится под (ниже) наклонной плоскости Б.

Второй тип задач - задачи, где плоскости не имеют вырожденных видов. Такие задачи можно решить только освоив способ построения линий пересечения, о чем речь пойдет ниже.

Известно, что линией пересечения двух плоскостей является прямая, для построения которой достаточно определить две точки, общие для обеих поверхностей (или одну точку и направление линии пересечения).

 
 

Чтобы найти линию пересечения двух плоскостей общего положения, надо на этих плоскостях провести две пары конкурирующих линий и найти их точки пересечения, которые и определяют положение точки пересече н ия (рисунок 8-14).

Здесь показано построение линии пересечения двух плоскостей Б и Д с помощью двух пар конкурирующих линий l=m и с=d. Если конкурирующие прямые первой пары оказались параллельными (рисунок 8-14б, l=m), то следует взять вторую пару конкурирующих прямых непараллельных первой. В этом случае линия пересечения будет проходить через полученную т. М параллельно конкурирующим прямым l=m первой пары.

 
 

Пример 4. Построить линию пересечения плоскостей общего положения Б (а//b) и Д (c // d ), ( рисунок 8-15).

Проведем пару фронтально-конкурирующих прямых t1 =t2. Пусть t1 принадлежит плоскости Б, a t2 - плоскости Д. Прямые t1 и t2 пересекаются в т. М (это следует из вида сверху), первой точке линии пересечения плоскостей.

Для построения второй точки линии пересечения -N, проведем вторую пару фронтально-конкурирующих прямых t3=t4 параллельно первой. Полученные точки M и N соединим, это и есть линия пересечения плоскостей k.

О перпендикулярности плоскостей речь пойдет ниже.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-11-19 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: