Управление криптографическими ключами.




Как бы ни была сложна и надежна сама криптосистема, она основана на использовании ключей. Если для обеспечения конфиденциального обмена информацией между двумя пользователями процесс обмена ключами три­виален, то в системе, где количество пользователей составляет десятки и сотни управление ключами, – это серьезная проблема.

Под ключевой информацией понимается совокупность всех действую­щих в системе ключей. Если не обеспечено достаточно надежное управле­ние ключевой информацией, то, завладев ею, злоумышленник получает не­ограниченный доступ ко всей информации.

Управление ключами – информационный процесс, включающий в себя три элемента:

- генерацию ключей;

- накопление ключей;

- распределение ключей.

 

Генерация ключей. В реальных системах используются специальные аппаратные и программные методы генерации случайных ключей. Как правило используют датчики случайных чисел. Однако степень случайности их генерации должна быть достаточно высокой. Идеальными генераторами являются устройства на основе “натуральных” случайных процессов. Напри­мер, генерация ключей на основе белого радиошума. Другим случайным математическим объектом являются десятичные знаки иррациональных чисел, например p или е, которые вычисляются с помощью стандартных математических методов.

В системах со средними требованиями защищенности вполне приемлемы программные генераторы ключей, которые вычисляют случайные числа как сложную функцию от текущего времени и (или) числа, введенного пользователем.

 

Накопление ключей. Под накоплением ключей понимается организация их хранения, учета и удаления.

Поскольку ключ является самым привлекательным для злоумышленника объектом, открывающим ему путь к конфиденциальной информации, то во­просам накопления ключей следует уделять особое внимание.

Секретные ключи никогда не должны записываться в явном виде на но­сителе, который может быть считан или скопирован.

В достаточно сложной системе один пользователь может работать с большим объемом ключевой информации, и иногда даже возникает необхо­димость организации минибаз данных по ключевой информации. Такие ба­зы данных отвечают за принятие, хранение, учет и удаление используемых ключей.

Каждая информация об используемых ключах должна храниться в за­шифрованном виде. Ключи, зашифровывающие ключевую информацию на­зываются мастер-ключами. Желательно, чтобы мастер-ключи каж­дый пользователь знал наизусть и не хранил их вообще на каких-либо мате­риальных носителях.

Очень важным условием безопасности информации является периодиче­ское обновление ключевой информации в системе. При этом переназначать­ся должны как обычные ключи, так и мастер-ключи. В особо ответственных системах обновление ключевой информации необходимо производить ежедневно.

Вопрос обновления ключевой информации связан и с третьим элементом управления ключами – распределением ключей.

 

Распределение ключей. Распределение ключей – самый ответственный процесс в управлении ключами. К нему предъявляются два требования:

- оперативность и точность распределения;

- скрытность распределяемых ключей.

В последнее время заметен сдвиг в сторону использования криптосистем с открытым ключом, в которых проблема распределения ключей отпадает. Тем не менее распределение ключевой информации в системе требует но­вых эффективных решений.

Распределение ключей между пользователями реализуются двумя раз­ными подходами:

1 Путем создания одного или нескольких центров распределения клю­чей. Недостаток такого подхода состоит в том, что в центре распределения известно, кому и какие ключи назначены, и это позволяет читать все сооб­щения, циркулирующие в системе. Возможные злоупотребления существен­но влияют на защиту.

2 Прямой обмен ключами между пользователями системы. В этом слу­чае проблема состоит в том, чтобы надежно удостоверить подлинность субъектов.

В обоих случаях должна быть гарантирована подлинность сеанса связи. Это можно обеспечить двумя способами:

1 Механизм запроса-ответа, который состоит в следующем. Если поль­зователь А желает быть уверенным, что сообщения, которые он получает от пользователя В, не являются ложными, он включает в посылаемое для В со­общение непредсказуемый элемент (запрос). При ответе пользователь В должен выполнить некоторую операцию над этим элементом (например, до­бавить 1). Это невозможно осуществить заранее, так как не известно, какое случайное число придет в запросе. После получения ответа с результатами действий пользователь А может быть уверен, что сеанс является подлин­ным. Недостатком этого метода является возможность установления, хотя и сложной, закономерности между запросом и ответом.

2 Механизм отметки времени. Он подразумевает фиксацию времени для каждого сообщения. В этом случае каждый пользователь системы может знать, насколько “старым” является пришедшее сообщение.

В обоих случаях следует использовать шифрование, чтобы быть уверенным, что ответ послан не злоумышленником и штемпель отметки времени не изменен.

При использовании отметок времени встает проблема допустимого временного интервала задержки для подтверждения подлинности сеанса. Ведь сообщение с отметкой времени в принципе не может быть передано мгно­венно. Кроме этого, компьютерные часы получателя и отправителя не могут быть абсолютно синхронизированы.

Для обмена ключами можно использовать криптосистемы с открытым ключом, используя тот же алгоритм RSA.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2018-01-31 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: