ЯДРА И ОПЕРАЦИОННЫЕ СИСТЕМЫРЕАЛЬНОГО ВРЕМЕНИ
Чтобы быстрее перейти к делу, примем как очевидные следующие моменты.
1. Когда-то операционных систем совсем не было.
2. Через некоторое время после их появления возникло направление ОС РВ.
3. Все ОС РВ являются многозадачными операционными системами. Задачи делят между собой ресурсы вычислительной системы, в том числе и процессорное время. Четкой границы между ядром (Кегnеl) и операционной системой нет. Различают их, как правило, по набору функциональных возможностей. Ядра предоставляют пользователю такие базовые функции, как планирование и синхронизация задач, межзадачная коммуникация, управление памятью и т. п. Операционные системы в дополнение к этому имеют файловую систему, сетевую поддержку, интерфейс с оператором и другие средства высокого уровня.
По своей внутренней архитектуре ОС РВ можно условно разделить на монолитные ОС, ОС на основе микроядра и объектно-ориентированные ОС. Графически различия в этих подходах иллюстрируются рисунками 1, 2, 3. Преимущества и недостатки различных архитектур достаточно очевидны, поэтому подробно мы на них останавливаться не будем.
Задачи, процессы, потоки
Существуют различные определения термина «задача» для многозадачной ОС РВ. Мы будем считать задачей набор операции (машинных инструкций), предназначенный для выполнения логически законченной функции системы. При этом задача конкурирует с другими задачами за получение контроля над ресурсами вычислительной системы
Принято различать две разновидности задач: процессы и потоки. Процесс представляет собой отдельный загружаемый программный модуль (файл), который, как правило, во время исполнения имеет в памяти свои независимые области для кода и данных. В отличие от этого потоки могут пользоваться общими участками кода и данных в рамках единого программного модуля.
|
Хорошим примером многопоточной программы является редактор текста WORD, где в рамках одного приложения может одновременно происходить и набор текста, и проверка правописания.
Преимущества потоков
1.Так как множество потоков способно размещаться внутри одного ЕХЕ-модуля, это позволяет экономить ресурсы как внешней, так и внутренней памяти.
2. Использование потоками общей области памяти позволяет эффективно организовать межзадачный обмен сообщениями (достаточно передать указатель на сообщение). Процессы не имеют общей области памяти, поэтому ОС должна либо целиком скопировать сообщение из области памяти одной задачи в область памяти другой (что для больших сообщений весьма накладно), либо предусмотреть специальные механизмы, которые позволили бы одной задаче получить доступ к сообщению из области памяти другой задачи.
3. Как правило, контекст потоков меньше, чем контекст процессов, а значит, время переключения между задачами-потоками меньше, чем между задачами-процессами.
4. Так как все потоки, а иногда и само ядро РВ размещаются в одном ЕХЕ-модуле, значительно упрощается использование программ-отладчиков (debager)
Недостатки потоков
1. Как правило, потоки не могут быть подгружены динамически. Чтобы добавить новый поток, необходимо провести соответствующие изменения в исходных текстах и перекомпилировать приложение. Процессы, в отличие от потоков, подгружаемы, что позволяет динамически изменять функции системы в процессе ее работы. Кроме того, так как процессам соответствуют отдельные программные модули, они могут быть разработаны различными компаниями, чем достигается дополнительная гибкость и возможность использования ранее наработанного ПО.
|
2. То, что потоки имеют доступ к областям данных друг друга, может привести к ситуации, когда некорректно работающий поток способен испортить данные другого потока. В отличие от этого процессы защищены от взаимного влияния, а попытка записи в «не свою» память приводит, как правило, к возникновению специального прерывания по обработке «исключительных ситуаций». Реализация механизмов управления процессами и потоками, возможность их взаимного сосуществования и взаимодействия определяются конкретным ПО РВ.
ОСНОВНЫЕ СВОЙСТВА ЗАДАЧ
Как правило, вся важная, с точки зрения операционной системы, информация о задаче хранится в унифицированной структуре данных - управляющем блоке (Тавк. Соп1го1 В1оск, ТСВ). В блоке хранятся такие параметры, как имя и номер задачи, верхняя и нижняя границы стека, ссылка на очередь сообщений, статус задачи, приоритет и т. п.
Приоритет - это некое целое число, присваиваемое задаче и характеризующее ее важность по сравнению с другими задачами, выполняемыми в системе. Приоритет используется в основном планировщиком задач для определения того, какая из готовых к работе задач должна получить управление. Различают системы с динамической и статической приоритетностью. В первом случае приоритет задач может меняться в процессе исполнения, в то время как во втором приоритет задач жестко задается на этапе разработки или во время начального конфигурирования системы.
|
Контекст задачи - это набор данных, содержащий всю необходимую информацию для возобновления выполнения задачи с того места, где она была ранее прервана. Часто контекст хранится в ТСВ и включает в себя такие данные, как счетчик команд, указатель стека, регистры СРС и РРи и т. п. Планировщик задач в случае необходимости сохраняет контекст текущей активной задачи и восстанавливает контекст задачи, назначенной к исполнению. Такое переключение контекстов и является, по сути, основным механизмом ОС РВ при переходе от выполнения одной задачи к выполнению другой.
Состояние (статус) задачи. С точки зрения операционной системы, задача может находиться в нескольких состояниях. Число и название этих состояний различаются от одной ОС к другой. Тем не менее практически в любой ОС РВ загруженная на выполнение задача может находиться, по крайней мере, в трех состояниях.
1. Активная задача - это задача, выполняемая системой в текущей момент времени.
2. Готовая задача - это задача, готовая к выполнению и ожидающая у планировщика своей «очереди».
3. Блокированная задача - это задача, выполнение которой приостановлено до наступления определенных событий. Такими событиями могут быть освобождение необходимого задаче ресурса, поступление ожидаемого сообщения, завершение интервала ожидания и т. п.
Пустая задача (Idle Task) - это задача, запускаемая самой операционной системой в момент инициализации и выполняемая только тогда, когда в системе нет других готовых для выполнения задач. Пустая задача запускается с самым низким приоритетом и, как правило, представляет собой бесконечный цикл «ничего не делать». Наличие пустой задачи предоставляет операцией ной системе удобный механизм отработки ситуаций, когда нет ни одной готовой к выполнению задачи.
Многократный запуск задач. Как правило, многозадачные ОС позволяют запускать несколько копий одной и той же задачи. При этом для каждой такой копий создается свой ТСВ и выделяется своя область памяти. В целях экономии памяти может быть предусмотрено совместное использование одного и того же исполняемого кода для всех запущенных копий. В этом случае программа должна обеспечивать повторную входимость (реентерабельность). Кроме того, программа не должна использовать временные файлы с фиксированными именами и должна корректно осуществлять доступ к глобальным ресурсам.
Реентерабельность (повторная входимость) означает возможность без
негативных последствий временно прервать выполнение какой-либо функций или подпрограммы, а затем вызвать эту функцию или подпрограмму снова Частным проявлением реентерабельности является рекурсия, когда тело подпрограммы содержит вызов самой себя. Классическим примером нереен терабельной системы является DOS.
ПЛАНИРОВАНИЕ ЗАДАЧ
Важной частью любой ОС РВ является планировщик задач. Несмотря на то, что в разных источниках он может называться по-разному (диспетчер задач, супервизор и т. н.), его функции остаются теми же: определить, какая из заадач должна выполняться в системе в каждый конкретный момент времени. Самым простым методом планирования, не требующим никакого специального ПО и планировщика как тако-вого, является использование циклического алгоритма в стиле round robin:
void main (void)
{
for (;;) {
task0();
taskl();
task2();
/* и т. д. */
}
}
Каждая «задача», представляющая собой отдельную подпрограмму, выполняется циклически. При этом надо придерживаться следующих правил:
1. Подпрограммы не должны содержать циклов ожидания в стиле
while (TRUE) {
if (switch up()) {
lamp_off();
break;
}
}
2. Подпрограммы должны выполнять свою работу как можно быстрее, что-бы дать возможность работать следующей подпрограмме.
3.Пpи необходимости подпрограмма может сохранять свое окружение и текущие результаты, чтобы в следующем цикле возобновить работу с того же места.
Можно отметить следующие преимущества циклического алгоритма.
1. Простота использования и прозрачность для понимания.
2. Если исключить из рассмотрения прерывания, система полностью детерминирована. Задачи всегда вызываются в одной и той же последовательности, что позволяет достаточно просто произвести анализ «наихудшего случая» и вычислить максимальную задержку.
3. Минимальные размеры кода и данных. Кроме того, в отличие от алгоритмов с вытеснением, для всех задач необходим только один стек.
4. Отсутствуют ошибки, обусловленные «гонками».
К недостаткам циклического алгоритма можно отнести отсутствие приоритетности и очередей. К тому же задачи вызываются независимо от того, должны ли они в данный момент что-либо делать или нет, а на прикладного программиста ложится максимальная ответственность за работоспособность системы.
Перейдем теперь к другому широко используемому алгоритму планирования. Речь пойдет о режиме разделения времени. Алгоритм реализуется следующим образом:
каждой задаче отводится определенное количество квантов времени (обычно кратно 1 мс), в течение которых задача может монопольно занимать процессорное время. После того как заданный интервал времени истекает, управление передается следующей готовой к выполнению задаче, имеющей наивысший приоритет. Та, в свою очередь, выполняется в течение отведенного для нес промежутка времени, после чего все повторяется в стиле round robin. Легко заметить, что такой алгоритм работы может привести к определенным проблемам. Представим, что в системе работают 7 задач, 3из которых имеют высокий приоритет, а 4 — низкий. Низкоприоритетные задачи могут никогда не получить управление, так как три высокоприоритетные задачи будут делить все процессорное время между собой. Единственную возможность для низкоприоритетных задач получить управление предоставляет ситуация, когда все высокоприоритетные задачи находятся в блокированном состоянии.
Для решения этой проблемы применяется прием, получивший название равнодоступность (fairness). При этом реализуется принцип адаптивной приоритетности, когда приоритет задачи, которая выполняется слишком долго, постепенно уменьшается, позволяя менее приоритетным задачам получить свою долю процессорного времени. Равнодоступность применяется главным образом в многопользовательских системах и редко применяется в системах реального времени.
Кооперативная многозадачность - это еще один алгоритм переключения задач, с которым широкие массы компьютерной общественности знакомы по операционной системе Windows З.х. Задача, получившая управление, выполняется до тех пор, пока она сама по своей инициативе не передаст управление другой задаче. По сути это продолжение идеологии round robin, и нет нужды объяснять, почему алгоритм кооперативной многозадачности в чистом виде мало применяется в системах реального времени.
Приоритетная многозадачность с вытеснением - это, по-видимому, наиболее часто используемый в ОС РВ принцип планирования. Основная идея состоит в том, что высокоприоритетная задача, как только для нее появляется работа, немедленно прерывает (вытесняет) низкоприоритетную. Другими словами, если какая-либо задача переходит в состояние готовности, она немедленно получает управление, если текущая активная задача имеет более низкий приоритет. Такое «вытеснение» происходит, например, когда высокоприоритетная задача получила ожидаемое сообщение, освободился запрошенный ею ресурс, произошло связанное с ней внешнее событие, исчерпался заданный интервал времени и т. п.
В общем случае алгоритмы планирования должны соответствовать критериям оптимальности функционирования системы. Однако, если для систем «жесткого» реального времени такой критерий очевиден: «ВСЕГДА и ВСЁ делать вовремя», то для систем «мягкого» реального времени это может' быть, например, минимальное «максимальное запаздывание» или средневзвешенная своевременность завершения операций. В зависимости от критериев оптимальности могут применяться алгоритмы планирования задач, отличные от рассмотренных.
Необходимо отметить, что в одной вычислительной системе могут одновременно сосуществовать задачи и «жесткого», и «мягкого» реального времени, и что только одна из этих задач, обладающая наивысшим приоритетом, может быть по-настоящему детерминированной.
Не стоит особо увлекаться приоритетами. Коли система нормально работает, когда все задачи имеют одинаковый приоритет, то и слава Богу. Если нет, то можно присвоить высокий приоритет «критической» задаче, и низкий приоритет всем остальным. Если у вас больше одной «критической» задачи, при недостаточном быстродействии системы имеет смысл рассмотреть многопроцессорную конфигурацию или, отказавшись от ПО РВ, перейти к простому циклическому алгоритму.
Как правило, разработчики стараются свести свою систему реального времени к наиболее простым конфигурациям, характерным для систем «жесткого» реального времени, иногда даже в ущерб эффективности использования вычислительных ресурсов. Причина понятна: сложные динамические системы весьма трудно анализировать и отлаживать, поэтому лучше заплатить за более мощный процессор, чем иметь в будущем проблемы из-за непредвиденного поведения системы. В связи с этим большинство существующих систем реального времени представляют собой статические системы с фиксированными приоритетами. Часто в системе реализуется несколько «режимов» работы, каждый из которых имеет свой набор выполняемых задач с заранее заданными приоритетами. Значительная часть особо ответственных систем по-прежнму реализуется без применения коммерческих ОС РВ вообще.
В. Диспетчеризация потоков.
Для потоков определяются те же методы диспетчеризации, что и для процессов в стандарте 1003.1b. Так как в системе могут одновременно существовать два планировщика (диспетчера) - планировщик процессов и планировщик потоков - определяется концепция конкурентного пространства. Конкурентное пространство некоторого потока - это набор потоков, с которыми он конкурирует за центральный процессор. При реализации может возникнуть три основных вида различных конкурентных пространств:
• Глобальная Диспетчеризация. Все потоки имеют глобальное конкурентное пространство, и, следовательно, диспетчеризация каждого потока производится с учетом всех остальных потоков, имеющихся в системе, независимо от того, какому процессу они принадлежат. Планировщик работает только на уровне потоков, а параметры диспетчеризации процессов игнорируются.
• Локальная Диспетчеризация. Потоки конкурируют только с другими потоками того же самого процесса. Диспетчеризация производится на двух уровнях. Сначала подвергаются диспетчеризации все процессы по отношению друг к другу. Затем потоки выбранного процесса конкурируют друг с другом за центральный процессор.
• Смешанная Диспетчеризация. Некоторые потоки имеют глобальное конкурентное пространство, а другие - локальное. Диспетчеризация производится на двух уровнях: на первом уровне диспетчеризации подвергаются процессы и глобальные потоки; на втором уровне происходит диспетчеризация локальных потоков выбранного процесса.
СИНХРОНИЗАЦИЯ ЗАДАЧ
Хотя каждая задача в системе, как правило, выполняет какую-либо отдельную функцию, часто возникает необходимость в согласованности (синхронизации) действий, выполняемых различными задачами. Такая синхронизация необходима, в основном, в следующих случаях.
1. Функции, выполняемые различными задачами, связаны друг с другом. Например, если одна задача подготавливает исходные данные для другой, то последняя не выполняется до тех пор, пока не получит от первой задачи соответствующего сообщения. Одна из вариаций в этом случае- это когда задача при определенных условиях порождает одну или несколько новых задач.
2. Необходимо упорядочить доступ нескольких задач к разделяемому ресурсу.
3. Необходима синхронизация задачи с внешними событиями. Как правило, для этого используется механизм прерываний, с которым читатель, безусловно, знаком.
4. Необходима синхронизация задачи по времени. Диапазон различных вариантов в этом случае достаточно широк, от привязки момента выдачи какого-либо воздействия к точному астрономическому времени до простой задержки выполнения задачи на определенный интервал времени. Для решения этих вопросов в конечном счете используются специальные аппаратные средства, называемые таймером.
Давайте рассмотрим все четыре случая более подробно.
Связанные задачи
Взаимное согласование задач с помощью сообщений является одним из важнейших принципов операционных систем реального времени. Способы реализации межзадачного обмена отличаются большим разнообразием, что не в последнюю очередь приводит к обилию терминов в этой области. Можно встретить такие понятия, как сообщение (message), почтовый ящик (mail box), сигнал (signal), событие (event), прокси (proxy) и т. п. В дальнейшем будем называть сообщениями любой механизм явной передачи информации от одной задачи к другой (такие объекты, как семафоры, можно отнести к механизму неявной передачи сообщений).
Объем информации, передаваемой в сообщениях, может меняться от 1 бита до всей свободной емкости памяти вашей системы. Во многих ОС РВ компоненты операционной системы, так же как и пользовательские задачи, способны принимать и передавать сообщения. Сообщения могут быть асинхронными и синхронными. В первом случае доставка сообщений задаче производится после того, как она в плановом порядке получит управление, а во втором случае циркуляция сообщений оказывает непосредственное влияние на планирование задач. Например, задача, пославшая какое-либо сообщение, немедленно блокируется, если для продолжения работы ей необходимо дождаться от ic'i.i или если низкоприоритетная за la'i.i шлет высоко! 1риоритетной зад.^п с" общение, которого последняя ожи (bi т то высокоприоритетная задача, если. конечно, используется 11риорит<-'гн:1я многозадачность с вытеснением ш медленно получит управление.
Иногда сообщения передаются черес отведенный для этого буфер определенного размера («почтовый яшик-) При этом, как правило, новое сообщение затирает старое, даже если последнее не было обработано.
Однако наиболее часто используется принцип, когда каждая задача имеет свою очередь сообщений, в конец которой ставится всякое вновь полученное сообщение. Стандартный принцип обработки очереди сообщений, по принципу «первым вошел, первым вы шел» (FIFO) не всегда оптимално соответствует поставленной задаче. Сообщение может содержать как сами данные, предназначенные для передачи, так и указатель на такие данные В последнем случае обмен может npоизводиться с помощью разделяемых областей памяти, разделяемых файлов и т. п.
Общие ресурсы
Ресурс - это общий термин, описывающий физическое устройстве или область памяти, которые могут одновременно использоваться только одной задачей. Процессорное время тоже представляет собой своеобразный конкурентно используемый ресурс вычислительной системы. Примером физических устройств могут служить клавиатура, дисплей, дисковый накопитель, принтер и т. п. Представим, например, что несколько задач пытаются одновременно выводить данные на принтер. На распечатке в результате ничего, кроме странной мешанины символов, мы не увидим. Упомянутые здесь проблемы обусловлены времязависимыми ошибками, или «гонками» и характерны для многозадачных ОС, применяющих алгоритмы планирования с вытеснением (кстати, системы с разделением времени также относятся к категории «вытесняющих»).
Приведенный пример показывает, что ошибки, обусловленные «гонками»,
а) характерны для работы с любыми ресурсами, доступ к которым имеют несколько задач, и
б) происходят только в результате совпадения определенных условий, а потому с трудом обнаруживаются на этапе отладки.
Вот возможные пути решения проблемы.
1. Не использовать алгоритмы планирования задач с вытеснением. Это решение, правда, не всегда приемлемо.
2. Использовать специальный сервер ресурса, то есть задачу, ответственную за упорядочивание доступа к ресурсу. В этом случае запрос на изменение значения глобальных данных посылается этому серверу в виде сообщения. Аналогичный подход применим и для физических устройств. Так, например, задача может послать данные на печать в виде сообщения, направленного к серверу принтера.
3. Запретить прерывания на время доступа к разделяемым данным. Кардинальное решение, которое, впрочем, не приветствуется в системах реального времени.
4. Использовать для упорядочивания доступа к глобальным данным семафоры. Наиболее часто применяемое решение, которое, впрочем, может привести в некоторых случаях к «инверсии приоритетов».
Семафор - это средство, которое используется для синхронизации доступа к ресурсам. В простейшем случае семафор представляет собой байтовую переменную, принимающую значение 0 или 1. Задача, перед тем как использовать ресурс, захватывает семафор, после чего остальные задачи, желающие использовать тот же ресурс, должны ждать, пока семафор (ресурс) освободится. Существуют также так называемые счетные семафоры, где семафор представляет собой счетчик. Пусть к системе подключено три принтера. Семафор, отвечающий за доступ к функциям печати, инициализируется со значением 3, а затем каждый раз, когда какая-либо задача запрашивает семафор для осуществления печати, его значение уменьшается на 1. После завершения печати задача освобождает семафор, в результате чего значение последнего увеличивается на 1. Если текущее значение семафора равно 0, то ресурс считается недоступным, и задачи, запрашивающие печать, должны ждать, пока не освободится хотя бы один принтер. Таким образом может производиться синхронизация доступа множества задач к группе из 3 принтеров.
Возможные неприятности в борьбе за ресурсы.
Смертельный захват (1)сас11оск). В народе побочные проявления этой ситуации называются более прозаично -«зацикливание» или «зависание». Причина этого может быть достаточно проста - «задачи не поделили ресурсы». Пусть, например, Задача Л.захватила ресурс клавиатуры и ждет, когда освободится ресурс дисплея, а в это время Задача В также хочет пообщаться с пользователем и, успев захватить ресурс дисплея, ждет теперь, когда освободится клавиатура. Так и будут.задачи ждать друг друга до второго потопа, а пользователь будет и это время смотреть на пустой экран и ругать последними словами яйцеголовых программистов, которые не смогли сделать нормально работающую систему. В таких случаях рекомендуется придерживаться тактики «или все, или ничего». Другими словами, если задача не смогла получить все необходимые для дальнейшей работы ресурсы, она должна освободить всё, что уже захвачено, и, как говорится, «зайти через полчаса». Другим решением, которое уже упоминалось, является использование серверов ресурсов.
Инверсия приоритетов (Рпоп1у туегяюп). Как уже отмечалось, алгоритмы планирования задач (управление доступом к процессорному времени) должны находиться в соответствии с методами управления доступом к другим ресурсам, а всё вместе - соответствовать критериям оптимального функционирования системы. Эффект инверсии приоритетов является следствием нарушения гармонии в этой области. Ситуация здесь похожа на «смертельный захват», однако сюжет закручен еще более лихо. Представим, что у нас есть высокоприоритетная Задача А, среднеприоритетная Задача В и низкоприоритетная Задача С. Пусть в начальный момент времени Задачи А и В блокированы в ожидании какого-либо внешнего события. Допустим, получившая в результате этого управление Задача С захватила Семафор А, но не успела она его отдать, как была прервана Задачей А. В свою очередь, Задача А при попытке захватить Семафор А будет блокирована, так как этот семафор уже захвачен Задачей С. Если к этому времени Задача В находится в состоянии готовности, то управление после этого получит именно она, как имеющая более высокий, чем у Задачи С, приоритет. Теперь Задача В может занимать процессорное время, пока ей не надоест, а мы получаем ситуацию, когда высокоприоритетная Задача А не может функционировать из-за того, что необходимый ей ресурс занят низкоприоритетной Задачей С.