Возникновение колебаний в электрической цепи связано с введением в цепь электрической энергии, посредством генераторов.
Наряду с генераторами в электрической цепи имеются устройства, потребляющие электрическую энергию (потребители).
Элементом электрической цепи будем называть идеализированное устройство, обладающее лишь каким-либо одним свойством (рис 1.4).
![]() |
Рис. 1.4.
Различают активные и пассивные элементы электрических цепей. К первым относятся источники, а ко вторым – элементы резистивного сопротивления, индуктивности и емкости. Индуктивности и емкости часто называют реактивными элементами.
Резистивное сопротивление
Элемент электрической цепи, который обладает свойством только рассеивать энергию, называется элементом резистивного сопротивления.
Напряжение, приложенное к элементу, и ток, проходящий через него, при согласном выборе положительных направлений напряжения и тока связаны между собой линейным соотношением , являющимся математической записью закона Ома. Данное соотношение может быть представлено также в виде:
.
Коэффициенты R [Ом] и G [См], количественно характеризующие параметры элемента, называются соответственно сопротивлением и проводимостью элемента.
Условное графическое изображение резистивного сопротивления приведено на рис. 1.5.
![]() |
![]() |
Рис. 1.5.
Мгновенная мощность электрических колебаний в резистивном сопротивлении:
, [Вт],
ни при одном значении времени не может быть отрицательной, иначе элемент мог бы вводить или возвращать энергию во внешнюю по отношению к нему цепь. Положительно, естественно, и количество электрической энергии, рассеянное в элементе за любой конечный интервал времени :
, [Дж].
Индуктивность
Элемент электрической цепи, который обладает свойством только запасать энергию в магнитном поле, называется элементом индуктивности. Между напряжением, приложенным к элементу и током, проходящем через элемент, при согласном выборе их положительных направлений существует линейное соотношение:
,
справедливое при условии существования производной функции по переменному (времени) t. Параметр L, [Гн] – называется индуктивностью. Условное графическое изображение элемента индуктивности приведено на рис. 1.6.
![]() |
Рис. 1. 6.
Мгновенная мощность в элементе может принимать как положительные, так и отрицательные значения.
В первом случае () в индуктивности накапливается энергия, а во втором (
) – энергия запасенная ранее в элементе отдается во внешнюю по отношению к нему электрическую цепь.
Энергия, запасенная в индуктивности к моменту t такова:
Емкость
Элемент электрической цепи, который обладает свойством только запасать энергию в электрическое поле, называется элементом емкости.
Напряжение на зажимах элемента и ток, проходящий через элемент связаны между собой линейным соотношением:
.
Условное графическое изображение емкости приведено на рис. 1. 7.
![]() |
Рис. 1. 7.
Энергия, запасенная в емкости к моменту t, такова:
.
В системе СИ во всех приведенных выше соотношениях сопротивление R, проводимость G, индуктивность L и емкость С измеряются соответственно в Омах (Ом), сименсах (См), генри (Гн) и фарадах (Ф), энергия – в джоулях (Дж), а мощность – в ваттах (Вт).
Независимые источники
Идеализация свойств реальных генераторов приводит к двум разновидностям активных элементов электрических цепей: источникам напряжений и источникам токов.
Источником напряжения считается такой источник, у которого напряжение на выходных зажимах не зависит от свойств цепи, являющейся внешней по отношению к нему. Напряжение между двумя зажимами любой электрической цепи, к которой подключен источник напряжения, называется задающим напряжением источника, или просто его напряжением.
Условное обозначение источника напряжения показано на рис. 1. 8.
![]() |
Рис. 1. 8. Рис. 1. 9.
Источники, параметры которых не зависят от свойств цепи, называются независимыми.
Примером источника электрической энергии, имеющего в первом приближении свойства источника напряжения, является аккумулятор большой емкости. Его внутренне сопротивление настолько мало, что при изменении тока в широких пределах напряжение на зажимах аккумулятора практически не изменяется.
Источником тока считается такой источник, через внешние зажимы которого проходит ток, независящий от свойств цепи, внешней по отношению к источнику. Этот ток называют задающим током источника.
Условное обозначение источника тока приведено на рис. 1. 9. левее пунктирной линии. Пунктиром показаны пассивные элементы с той целью, чтобы подчеркнуть, что в цепи всегда должен быть замкнутый путь для прохождения тока источника. При ток через источник протекает в направлении стрелок.
Если в какой-то момент задающий ток равен нулю, то зажимы нагрузки со стороны источника оказываются разомкнутыми.
Реальный источник обладает собственным внутренним сопротивлением R 0, а также задающим напряжением и задающим током
. Он может быть отображен как последовательной, так и параллельной схемами замещения.
![]() | ![]() | ||
Величина e определяется из опыта холостого хода. Действительно, при разомкнутых зажимах 1-2 ток через R 0 не проходит и напряжение на нем равно нулю. Подключенный к этим зажимам вольтметр покажет напряжение равное e.
Если закоротить зажимы 1-2, то весь ток источника пойдет через короткозамкнутые зажимы. Включенный между ними амперметр покажет величину тока равную .
По своему внешнему проявлению обе схемы одинаковы и у них одно внутреннее сопротивление
.
Это выражение дает возможность по известным одной схемы находить и другой.
В теории электрических цепей рассматриваются и зависимые, или управляемые источники. Они представляют собой результат идеализации свойств реальных транзисторных и ламповых усилителей, используемых в линейном режиме.
Зависимый источник напряжения представляет собой идеализированную электрическую цепь с двумя парами зажимов. К одной из них подсоединен источник напряжения, у которого задающее напряжение пропорционально напряжению (току), подведенному к другой паре зажимов, и только этому (управляющему) напряжению (току). Аналогично вводится и понятие зависимого источника тока.
При анализе колебаний в реальной линейной электрической цепи она заменяется некоторой идеализированной цепью из того или иного числа элементов, колебания в которой пренебрежимо мало отличаются от колебаний в анализируемой цепи.
Заключение
Теория электрических цепей как наука посвящена решению задач анализа и синтеза электрических цепей. К электрическим цепям относятся огромное число технических устройств самого разнообразного назначения. Там, где речь идет об электрическом токе или электрическом напряжении, имеют дело с электрической цепью. Задача анализа состоит в качественной и количественной оценках свойств заданной электрической цепи, а задача синтеза – в построении цепи с заданными свойствами.
Литература
1. Белецкий А. Ф. Теория линейных электрических цепей. – М.: Радио и связь, 1986.
2. Бакалов В. П. и др. Теория электрических цепей. – М.: Радио и связь, 1998.
3. Качанов Н. С. и др. Линейные радиотехнические устройства. М.: Воен. издат., 1974.