Виды термической обработки и ее технологические параметры.




Отжиг — термическая обработка (термообработка) металла, при которой производится нагревание металла, а затем медленное охлаждение. Эта термообработка (т. е. отжиг) бывает разных видов (вид отжига зависит от температуры нагрева, скорости охлаждения металла).

Закалка — термическая обработка (термообработка) стали, сплавов, основанная на перекристаллизации стали (сплавов) при нагреве до температуры выше критической; после достаточной выдержки при критической температуре для завершения термической обработки следует быстрое охлаждение. Закаленная сталь (сплав) имеет неравновесную структуру, поэтому применим другой вид термообработки — отпуск.

Отпуск — термическая обработка (термообработка) стали, сплавов, проводимая после закалки для уменьшения или снятия остаточных напряжений в стали и сплавах, повышающая вязкость, уменьшающая твердость и хрупкость металла.

Нормализация — термическая обработка (термообработка), схожая с отжигом. Различия этих термообработок (нормализации и отжига) состоит в том, что при нормализации сталь охлаждается на воздухе (при отжиге — в печи)

Классификация оборудования термических производств.

 

основное, дополнительное и вспомогательное. К основному относится оборудование, применяемое для непосредственного выполнения технологических процессов термической обработки, которые связаны с нагревом и охлаждением металла: печи, ванны, установки пламенной закалки, установки ТВЧ, закалочные баки и т. д. Дополнительное оборудование включает оборудование, используемое для операций, которые идут за закалкой и отпуском: моечные машины и промывные баки, правильные установки, дробеметные аппараты и т. д. Вспомогательное оборудование состоит из установок для приготовления твердого и жидкого карбюризаторов, газовых атмосфер, подъемно-транспортных машин, воздуходувок и т. д. Наиболее совершенным оборудованием термических цехов являются автоматизированные и механизированные агрегаты, представляющие собой комплекс оборудования, который предназначен для выполнения технологических операций термической и химико-термической обработки, включая контроль и управление этими процессами. Термические печи, применяемые в настоящее время в машиностроительной промышленности, классифицируются по трем основным признакам: по технологическому, конструктивным особенностям и по источнику нагрева. По технологическому признаку печи делятся в зависимости от операций, для которых они предназначены в термическом цехе: отжигательные, закалочные, цементационные, для азотирования и отпускные. В зависимости от конструктивных особенностей печи подразделяются на камерные, периодические и непрерывного действия, а в зависимости от применяемой тепловой энергии— на нефтяные, газовые и электрические. Превращения в сталях при нагреве и охлождении. Превращения, происходящие в стали при нагревании Сталь с содержанием углерода 0,83%. При температуре 723° в точкеAс1 перлит переходит в аустенит. Сталь с содержанием углерода 0,4%. Структура стали представляет собой перлит и феррит. При температуре 723° в точке К1 перлит переходит в аустенит, и по мере повышения температуры происходит растворение свободного феррита в аустените. При пересечении линии GS в точке К2 закончится растворение феррита и структура будет полностью состоять из аустенита. Для этой стали точка К1на диаграмме будет нижней критической точкой Ас1,а К2— верхней критической точкой Ас1,. Сталь с содержанием углерода 1,2%. Структура стали представляет собой перлит и цементит. При температуре 723° в точке Pi перлит переходит в аустенит, и при дальнейшем повышении температуры происходит постепенное растворение цементита в аустените. При пересечении линии SEв точке Р2 это растворение закончится. Для этой стали точка Р1 явится нижней критической точкой Ас1, а точка Ρ2 — верхней критической точкой, которая для заэвтектоидных сталей обозначается Асm. Линия на диаграмме GS, соответствует окончанию растворения феррита в аустените в доэвтектоидных сталях, а линия SE соответствует окончанию растворения цементита в аустените в заэвтектоидных сталях. заэвтектоидные стали при операциях термической обработки не нагревают выше линии Аcт(такая высокая температура нагрева приведет к перегреву и ухудшению свойств стали), а ограничиваются нагревом выше первой критической точки ACl, что полностью обеспечивает получение необходимых свойств.    

 

Превращения, происходящие в стали при медленном охлаждении

В сталях, нагретых до аустенитного состояния, при весьма медленном охлаждении произойдут обратные превращения, а именно:

а) в стали с содержанием углерода 0,83% аустенит превратится в перлит;

б) в стали с содержанием углерода 0,4% сначала из аустенита начнет выделяться феррит, а затем в районе температуры 700° оставшийся аустенит превратится в перлит и

в) в стали с содержанием углерода 1,2% сначала из аустенита выделится цементит, а затем в районе температуры 700° оставшийся аустенит превратится в перлит.

Даже при весьма медленном охлаждении температура распада аустенита не совпадает с теми температурами, при которых аустенит образовался при нагревании. Чем скорость охлаждения больше, тем больше становится гистерезис, т. е. разница между критическими температурами (точками) при нагревании и охлаждении.

Превращения, происходящие в стали при быстром охлаждении

не успевает произойти превращение аустенита в перлит, в зависимости от скорости охлаждения аустенит превращается в новые структуры - мартенсит, троостит или сорбит. отличается повышенной твердостью, прочностью и уменьшенной пластичностью. Если углеродистую сталь, нагретую выше критических температур, охладить очень быстро, то аустенит в мартенсит при температуре около 200°. При несколько меньшей скорости охлаждения образуется структура троостит, а при еще меньшей — сорбит.

В производственных условиях при охлаждении углеродистой инструментальной стали в воде образуется мартенсит, при охлаждении в масле — троостит и при охлаждении в струе воздуха -сорбит. На рис. 6 показаны микроструктуры закаленной стали.

Рис. 6. Микроструктура закаленной стали:

а — игольчатый мартенсит;

б — сорбит.

В легированных сталях, благодаря присутствию специальных элементов, для образования мартенсита не требуется столь большой скорости охлаждения, как для углеродистых сталей, и мартенсит образуется при охлаждении в масле, а для быстрорежущих сталей — и при охлаждении на воздухе.

Троостит и сорбит можно получить не только в результате ускоренного охлаждения, но и путем нагрева закаленной стали, имеющей структуру мартенсита, до температуры ниже Aс1, т. е. путем отпуска стали. В этом случае троостит получается при нагреве стали до 400°, а сорбит—при нагреве до 650°. При нагреве до промежуточных температур получаются смешанные структуры: при нагреве от 250—400° — мартенсит и троостит и при нагреве от 400—650° — троостит и сорбит. В производственных условиях троостит и сорбит получают путем отпуска закаленной стали.

Превращения, происходящие в стали при охлаждении в среде, имеющей температуру выше 200° (изотермическое превращение)

Если деталь, нагретую выше критической точки, поместить в среду, имеющую температуру от 700 до примерно 200°, и выдержать в ней до выравнивания температуры по всему сечению, то аустенит превратится в ту структуру, которая соответствует превращению при данной температуре.

О поведении стали при изотермической обработке, выборе температуры и времени выдержки судят по кривым изотермического превращения, построенным для разных марок стали.

Если углеродистую инструментальную сталь, нагретую до 800°, поместить в масло, расплавленную соль или щелочь при температуре 250°, в ней образуется игольчатый троостит с высокой твердостью Rc=45—55. Если эту же сталь охладить в среде, имеющей температуру свыше 600°, в ней образуется перлит и такая сталь легко обрабатывается на станках. При охлаждении стали в среде с промежуточными температурами образуются структуры троостита и сорбита с соответствующей твердостью.

Изотермический отжиг нашел большое применение при термической обработке инструментальных сталей как процесс, резко уменьшающий время по сравнению с другими видами отжига.

Изотермическая закалка в инструментальном деле применяется редко из-за недостаточной для инструмента твердости, достигаемой при этом процессе.

Диаграмма изотермического распада переохлажденного аустенита: перлитное, бейнитное и мартенситное превращения, структура и свойства продуктов.

Рис. 8.5. Диаграмма изотермического превращения аустенита эвтектоидной стали

На диаграмме можно выделить следующие области: 1) область устойчивого аустенита (для стали, содержащей 0,8 % С, выше АС1); 2) область переохлажденного аустенита; 3) область начавшегося, но еще не закончившегося превращения А® П; 4) область закончившегося превращения А ® П; 5) область начавшегося, но еще не закончившегося мартенситного превращения (между Мн–Mк); 6) мартенситная область (ниже Мк).

Область, расположенная слева от кривой начала распада аустенита (область переохлажденного аустенита), определяет продолжительность инкубационного периода, характеризующую устойчивость переохлажденного аустенита. С увеличением переохлаждения его устойчивость быстро уменьшается, достигая минимума (для эвтектоидной стали около 550 °С), и далее вновь возрастает.

В зависимости от степени переохлаждения аустенита различают три температурные области превращения: перлитную(переохлаждение до 500 °С),мартенситную (переохлаждение ниже Мн — для эвтектоидной стали ниже температуры 240 °С) и промежуточного (бейнитного) превращения (переохлаждение для эвтектоидной стали в интервале от 500 до 240 °С).

Рассмотрим структуры, образующиеся при диффузионном превращении аустенита.

При температуре 650–700 °С образуется собственно перлит. При перлитном превращении ведущей фазой является цементит. В результате образования пластинок цементита соседние участки аустенита обедняются углеродом, что в свою очередь приводит к образованию пластинок феррита.

 

Мартенсит — микроструктура игольчатого (пластинчатого) вида, а также реечного (пакетного) наблюдаемая в закалённыхметаллических сплавах и в некоторых чистых металлах, которым свойственен полиморфизм. Мартенсит — основная структурная составляющая закалённой стали; представляет собой упорядоченный пересыщенный твёрдый раствор углеродав α-железе такой же концентрации, как у исходного аустенита. С превращением мартенсита при нагреве и охлаждении связанэффект памяти металлов и сплавов. Назван в честь немецкого металловеда Адольфа Мартенса.

Бейнит (по имени английского металлурга Э. Бейна, (англ.) en:Edgar Bain), игольчатый троостит, структура стали, образующаяся в результате так называемого промежуточного превращения аустенита. Бейнит состоит из смеси частицпересыщенного углеродом феррита и карбида железа. Образование бейнита сопровождается появлением характерного микрорельефа на полированной поверхности шлифа.

Перлит (металловедение) — одна из структурных составляющих железоуглеродистых сплавов — сталей и чугунов: представляет собой эвтектоидную смесь двух фаз — феррита и цементита (в легированных сталях — карбидов).

Практика термической обработки: отжиг, нормализация, закалка с отпуском или старением.

Гомогенизационный отжиг + старение
Например, для суперсплавов на базе никеля (типа «Инконель 718») типичной является следующая термическая обработка:
Гомогенизация структуры и растворение включений (англ. Solution Heat Treatment) при 768—782 °C с ускоренным охлаждением. Затем производится двухступенчатое старение (англ. Precipitation Heat Treatment) — 8 часов при температуре 718 °C, медленное охлаждение в течение 2 часов до 621—649 °C и выдержка в течение 8 часов. Затем следует ускоренное охлаждение.
Закалка + высокий отпуск (улучшение)
Многие стали проходят упрочнение путём закалки — ускоренного охлаждения (на воздухе, в масле или в воде). Быстрое охлаждение приводит, как правило, к образованию неравновесной мартенситной структуры. Сталь непосредственно после закалки отличается высокой твёрдостью, остаточными напряжениями, низкойпластичностью и вязкостью. Так, сталь 40ХНМА (SAE 4340) сразу после закалки имеет твёрдость выше 50 HRC, в таком состоянии материал непригоден для дальнейшего использования из-за высокой склонности к хрупкому разрушению. Последующий отпуск — нагрев до 450 °C — 500 °C и выдержка при этой температуре приводят к уменьшению внутренних напряжений за счёт распада мартенсита закалки, уменьшения степени тетрагональности его кристаллической решётки (переход к отпущенному мартенситу). При этом твёрдость стали несколько уменьшается (до 45 — 48 HRC). Подвергаются улучшению стали с содержанием углерода 0,3 — 0,6 % C.

Основные закономерности химико-термической обработки (ХТО)

Химико-термическая обработка (ХТО) – одновременный нагрев и выдержка металлических (а в ряде случаев и неметаллических) материалов при высоких температурах в химически активных средах (твердых, жидких, газообразных).

В подавляющем большинстве случаев химико-термическую обработку проводят с целью обогащения поверхностных слоев изделий определенными элементами. Их называют насыщающими элементами или компонентами насыщения.

В результате ХТО формируется диффузионный слой, т.е. изменяется химический состав, фазовый состав, структура и свойства поверхностных слоев. Изменение химического состава обуславливает изменения структуры и свойств диффузионного слоя.

ХТО применяют с целью:

поверхностного упрочнения металлов и сплавов (повышения твердости, износостойкости, усталостной и коррозионно-усталостной прочности, сопротивления кавитации и т.д.);

сопротивления химической и электрохимической коррозии в различных агрессивных средах при комнатной и повышенных температурах;

придания изделиям требуемых физических свойств (электрических, магнитных, тепловых и т.д.);

придания изделиям соответствующего декоративного вида (преимущественно с целью окрашивания изделий в различные цвета);

облегчения технологических операций обработки металлов (давлением, резанием и др.).

Требуемые свойства диффузионных (поверхностных) слоев могут формироваться как в процессе химико-термической обработки (азотирование, хромирование, борирование и др.), так и при последующей термообработке (цементация, нитроцементация).

 

Виды ХТО

Цементация стали — поверхностное диффузионное насыщение малоуглеродистой стали углеродом с целью повышения твёрдости, износоустойчивости.

Цементации подвергают низкоуглеродистые (обычно до 0.25 % C) и легированные стали, процесс в случае использования твёрдого карбюризатора проводится при температурах 900—950 °С, при газовой цементации (газообразный карбюризатор) — при 850—900 °С.

После цементации изделия подвергают термообработке, приводящей к образованию мартенситной фазы в поверхностном слое изделия (закалка на мартенсит) с последующим отпуском для снятия внутренних напряжений.

Способы цементации:

в твёрдом карбюризаторе

в газовом карбюризаторе

в кипящем слое

в растворах электролитов

в пастах

Азотирование стали — насыщение поверхности стальных деталей азотом для повышения твердости, износоустойчивости и коррозионной стойкости.

Нитроцементация сталей — процесс насыщения поверхности стали одновременно углеродом и азотом при 700—950 °C в газовой среде, состоящей из науглероживающего газа и аммиака. Наиболее часто нитроцементация проводится при 850—870 °С. После нитроцементации следует закалка в масло с повторного нагрева или непосредственно из нитроцементационной печи с температурой насыщения или небольшого подстуживания. Для уменьшения деформации рекомендуется применять ступенчатую закалку с выдержкой в горячем масле 180—200 °С.

Борирование — процесс химико-термической обработки, диффузионного насыщения поверхности металлов и сплавов бором при нагреве и выдержке в химически активной среде. Борирование приводит к упрочнению поверхности.

Алитирование, алюминирование (от нем. alitiren, от Al — алюминий) — (покрытие) поверхности стальных деталей алюминием для защиты от окисления при высоких температурах (700—900 °C и выше) и сопротивления атмосферной коррозии. Один из методов упрочнения машин и деталей

Практика проведения цементации, азотирования, нитроцементации, дифузионнойматализации.

Цементуемые, улучшаемые, пружинные, износостойкие сплавы и с тали.

Цементируемые стали

Цементируемые стали применяют для изготовления деталей, работающих в условиях поверхностного износа и испытывающих при этом динамические нагрузки. К цементируемым относятся малоуглеродистые стали, содержащие 0,1-0,3% углерода (такие, как 15, 20, 25), а также некоторые легированные стали (15Х, 20Х, 15ХФ, 20ХН 12ХНЗА, 18Х2Н4ВА, 18Х2Н4МА, 18ХГТ, ЗОХГТ, 20ХГР).

Улучшаемые стали

К улучшаемым сталям относят стали, которые подвергают улучшению - термообработке, заключающейся в закалке и высоком отпуске. К ним относятся среднеуглеродистые стали (35, 40, 45, 50), хромистые стали (40Х, 45Х, 50Х), хромистые стали с бором (ЗОХРА, 40ХР), хромоникелевые, хромокремниемарганцевые, хромоникельмолибденовые стали.

Пружинные стали

Пружинные (рессорно-пружинные) стали сохраняют в течение длительного времени упругие свойства, поскольку имеют высокий предел упругости, высокое сопротивление разрушению и усталости. К пружинным относятся углеродистые стали (65, 70) и стали, легированные элементами, которые повышают предел упругости - кремнием, марганцем, хромом, вольфрамом, ванадием, бором (60С2, 50ХГС, 60С2ХФА, 55ХГР).

Износостойкие стали

Износостойкие стали применяют для деталей, работающих в условиях абразивного трения, высокого давления и ударов (крестовины железнодорожных путей, траки гусеничных машин, щеки дробилок, черпаки землеройных машин, ковши экскаваторов и др.)- Пример износостойкой стали - высокомарганцовистая сталь 110Г13Л.

Классификация инструментальных материалов.

Невозможно создать такой универсальный инструментальный материал, который был бы одинаково пригоден для всего многообразия условий механической обработки. Поэтому в промышленности используется широкая номенклатура инструментальных материалов, отвечающих рассмотренным выше требованиям.

Все инструментальные материалы подразделяются на следующие группы, ранжированные по степени повышения их режущих свойств:

1. Углеродистые и низколегированные инструментальные стали

2. Быстрорежущие стали

3. Твердые сплавы (металлокерамика) без покрытия и с покрытием

4. Минералокерамика и керметы;

5. Синтетические композиции из нитрида бора;

6. Синтетические и природные алмазы.

Стали для режущего инструмента. (углеродистые, малолегированные, быстрорежущие).

Углеродистой сталью называется инструментальная или конструкционная сталь, не содержащая легирующих добавок. Углеродистая сталь подразделяется на низкоуглеродистую (до 0,25% углерода), среднеуглеродистую (от 0,25 до 0,6% углерода) и высокоуглеродистую (до 2% углерода).

Углеродистая сталь отличается повышенной прочностью и высокой твердостью.

По качеству различают углеродистую сталь обыкновенную и качественную конструкционную.

Углеродистая сталь обыкновенного качества бывает холоднокатаная (тонколистовая) и горячекатаная (фасонная, сортовая, тонколистовая, толстолистовая, широкополосная). Она выпускается следующих марок: Ст1кп, Ст1пс. Индексы в маркировке расшифровываются так: кп кипящая, пс полуспокойная.

Качественная конструкционная сталь - это кованные и горячекатаные заготовки толщиной до 250 мм, серебрянка (круглые прутки со специальной поверхностью) и калиброванная сталь. Она выпускается следующих марок: 05кп, 10, 15пс и т.д. Цифры в маркировке обозначают процентное содержание углерода (в сотых долях процента). Качественная конструкционная сталь используется для изготовления ответственных деталей механизмов и машин, штамповки.

Качественная сталь имеет в составе не более 0,03 % фосфора и серы, высококачественная не более 0, 02%.

Углеродистая сталь бывает разного назначения: предназначенная для статически нагруженного инструмента и для ударных нагрузок.

Для изготовления режущего инструмента с высокой твердостью, не испытывающего ударов (хирургический инструмент, напильники, шаберы, плашки, сверла, измерительные инструменты) используются стали У10?У13. Такие стали, подвергающиеся всем видам термообработки и содержащие хром, используются также для производства токарных резцов.

Для изготовления инструмента, подвергающегося ударным нагрузкам (топоры, пилы, деревообрабатывающие инструменты, зубила, клейма по металлу, отвертки) используются стали У7-У9. Они также подвергаются любому способу термообработки.

 

[ 8)КОРРОЗИЯ]

 

 

[ 9)Лесоматериалы]

Лесоматериа́лы — материалы из древесины, сохранившие её природную физическую структуру и химический состав, получаемые из поваленных деревьев, хлыстов и (или из их частей) путём поперечного и (или) продольного деления.

По форме и размерам поперечного сечения:

Брусья - пиломатериалы толщиной и шириной более 100 мм. Соответственно числу пропиленных сторон брусья бывают: двухкантные, трехкантные (ванчесы), четырехкантные; по форме поперечного сечения - острокантные и тупокантные. Острокантные брусья имеют прямоугольную или квадратную форму, а на верхнем торце допускаются тупые углы с учетом обзола. Тупокантные брусья имеют на торцах обзолы - оставшуюся часть боковой поверхности бревна.
Бруски - обрезной пиломатериал толщиной до 100 мм, шириной не более двойной толщины.
Обапол - пилопродукция, получаемая из боковой части бревна и имеющая одну пропиленную, а другую непропиленную или частично пропиленную поверхности.
Шпалы - пиломатериалы в виде бруса, имеющие крупное поперечное сечение (предназначены для укладки под рельсы железных дорог).
Пластина - распиленное бревно по продольной оси ствола.
Четверть (четвертина) - распил бревна по двум взаимно перпендикулярным диаметрам на 4 части.
Горбыль - срезанная при распиловке боковая часть бревна.
Планки - пиломатериалы толщиной 60-80 мм, шириной 120-160 мм.
Рейки - плоские бруски, тонкие узкие доски.
Доски - обрезной пиломатериал толщиной до 100 мм и шириной более двойной толщины. Все доски, которые получаются при распиловке даже одного бревна (ствола дерева) неодинаковы по структуре и отличаются по качеству материалов.

[ 10)Пластмассы, смолы и резины]

СИНТЕТИЧЕСКИЕ СМОЛЫ

применяются при изготовлении гидроизоляционных мате­риалов и составов в качестве вяжущих.

В зависимости от свойств исходного сырья бывают в виде вяз­ких жидкостей, порошков или гранул.

Группы:

Смолы, применяемые на заводах для изготовления материалов, поставляемых на строительство в готовом к употреблению виде, на­пример рулонные и листовые оклеечные материалы, лакокрасочные материалы и т. п.;

Смолы, применяемые для приготовления составов иа месте про­изводства работ или на предприятиях производственной базы строи­тельства.

Технология получения материалов и составов на основе синтети­ческих смол зависит от химического состава и строения. Смолы подразделяются на термореактив­ные и термопластичные.

Термореактивные смолы при нагревании или при действии спе­циальных веществ (отвердителей) превращаются в твердые нераство­римые и неплавкие материалы, изменяя свои свойства необратимо. При чрезмерном нагреве такие смолы разлагаются.

Термопластичные смолы при нагревании размягчаются и стано­вятся вязкотекучими, а при охлаждении восстанавливают свои пер­воначальные свойства, т. е. изменяют свои свойства обратимо. Тер­мопластичные смолы могут растворяться при введении специальных растворителей. Вид растворителя предопределяется особенностями свойств тех или иных смол. По мере испарения растворителей тер­мопластичные смолы восстанавливают свои исходные свойства.

Технические свойства синтетических смол.

Применяемые, для приготовления гидроизоляционных и противокоррозионных материа­лов, эпоксидные смолы долж­ны быть вязко-жидкими. Для получения материалов заводского изготовления используют также твердые эпоксидные смолы, предва­рительно подвергаемые этерификации и растворенные в органиче­ских растворителях.

Эпоксидные смолы в состоянии поставки обладают свойствами термопластов, а после отверждения приобретают свойства термо­реактивных полимеров

ПЛАСТМАССЫ

- материалы, получаемые из природных и синтетических полимеров

Свойства:

- малая плотность

- высокая уд. Прочность

- низкая теплопроводность

- хим. Стойкость

- эл. И звукоизоляц свойства

Техн. Свойства

- легко формируются

- обрабатываемость резанием

- можно склеивать и сваривать/прессовать

Недостатки

-склонность к старению

- низкая теплостойкость

-низкая ударная вязкость

Состав пластмасс

- полимерные связующие вещества

- наполнители – для повышения прочности и придания спец свойств

- пластификаторы – для повышения пластичности при изготовлении

- отвердители

-стабилизаторы – для замедления процессов старения

-красители

Классификация пластмасс

По поведению при нагреве

- термопластичные – при неоднократном нагревании и охлаждении каждый раз размягчаются и затвердевают

- термореактивные – при нагреве размягчаются, при охлаждении – затвердевают, при послед нагревах – сохраняют форму

По виду наполнителя

Волокнистые

Порошковые

Слоистые

Газонаполненные

- материал на основе синт. Смол содержащий газовые включения

(пенопласт)

Без наполнителя

По способу переработки изделия из пластмассы

- литьевые – из термопластов

-прессовочные-гор.пресс = термореакт.

- штамповые - термопласты

РЕЗИНЫ

- искусственный материал, получаемый в результате обработки резиновой смеси.

Основной компонент – каучук + наполнители

Каучук – полимер с очень большой степенью образования деформаций при небольших нагрузках

Бывает:

-Натуральный – из троп. Растений

-Синтетический – из спирта или нефте-хим сырья

Резину из каучука получают путем вулканизации (вулканизатор – сера)

1-5% - редкая сетка – мягкая резина

30% - ЭБОНИТ

В состав также входят:

Наполнители – оксид цинка

Пластификаторы – парафин мазут канифоль

Противостарители

Красители, регенераторы – облегчают переработку из старой резины

Назначение:

-общего назначения – резины для слабо агрессивных сред Т от -10 до +150С

Авт. Шины/ резины передач/изоляция кабелей/амортизация

- спец. Назначения

Теплостойкие до 350С

Морозостойкие до -70С

маслобензостойкие

[ 11)Каменные материалы]

Гипсовые и гипсобетонные изделия. Первые отличаются тем, что их основой является чистый гипс, а гипсобетонные изделия формуют из гипса с заполнителем, в качестве которого используют песок из разнообразных материалов, пемзу или органические заполнители.

Силикатные материалы и изделия производятся из известково-песчаной смеси путем обжига отформованной массы. Самый известный тип силикатного материала-изделия — силикатный кирпич.

Асбестоцементные изделия — это в основном листовые материалы, получаемые из смеси цемента, асбестовых волокон и воды. Среди них хорошо всем известные асбестоцементные волнистые листы («шифер»), используемые для покрытия кровель и в качестве наружной облицовки каркасных и панельных домов и хозпостроек.

Облицовочный камень — декоративный облицовочный материал, используемый для отделки фасадов зданий. Бывает как природного происхождения — натуральный камень, так и промышленного производства — искусственный камень.

Виды облицовочных камней:

Фельзит

Песчаник

Известняк

Гранит

Мрамор

Сланец

Ракушечник

Для получения многих искусственных строительных материалов или склеивания штучных материалов в изделия и конструкции широко используют неорганические (известь, гипсовые, вяжущие, растворимое стекло, цементы) и органические (битумы, дегти, смолы, клей) вяжущие вещества.

Неорганические вяжущие вещества представляют собой искусственные тонкоизмельченные порошки, способные при смешивании с водой (в отдельных случаях с растворами некоторых солей) образовывать пластично-вязкую и легкоформуемую массу (вяжущее тесто), которая в результате физико-химических процессов постепенно затвердевает и переходит в камневидное тело.

В большинстве случаев в вяжущее тесто вводят заполнители, что способствует экономии вяжущего и улучшению свойств искусственного камня. Неорганические вяжущие вещества в зависимости от их способности твердеть в определенной среде делят на воздушные и гидравлические.

По наличию основного минерала цементы подразделяются:

романцемент — преобладание белита, в настоящее время не производится;

портландцемент — преобладание алита, наиболее широко распространён в строительстве;

глинозёмистый цемент — преобладание алюминатной фазы;

магнезиальный цемент (Цемент Сореля) — на основе магнезита, затворяется водным раствором солей;

смешанные цементы — цементы, получаемые путём смешения вышеприведенных цементов с воздушными вяжущими, минеральными добавками и шлаками, обладающими вяжущими свойствами.

кислотоупорный цемент — на основе гидросиликата натрия (Na2O·mSiO2·nH2O), сухая смесь кварцевого песка и кремнефтористого натрия, затворяется водным раствором жидкого стекла.

При бурении применяются:

тампонажные растворы на основе вяжущих веществ (цементный, аэрированный, нефтецементный, нефтеэмульсионный, гипсовый, известковый, расширяющийся, гипсоцементный растворы);

сухие быстросхватывающиеся тампонажные смеси;

тампонажные растворы на основе коагулирующих веществ (гинистый, соляробентонитовый),

комбинированные тампонажные растворы на основе неорганических веществ (глиноцементный, соляробентонитовый);

тампонажные составы на основе органических веществ (синтетические смолы, гипано-хлоркальциевая тампонажная смесь, латексные и битумные составы и др);

комбинированные органоминеральные тампонажные смеси (полимерцементный, вязкоупругий глинистый составы, гипано-цементная смесь, отверждаемый глинистый состав).

Виды бетона

Согласно ГОСТ 25192-2012, ГОСТ 7473-2010 (ранее 7473-94) классификация бетонов производится по основному назначению, виду вяжущего вещества, виду заполнителей, структуре и условиям твердения:

По назначению различают бетоны обычные (для промышленных и гражданских зданий) и специальные — гидротехнические, дорожные, теплоизоляционные, декоративные, а также бетоны специального назначения (химически стойкие, жаростойкие, звукопоглощающие, для защиты от ядерных излучений и др.).

По виду вяжущего вещества различают цементные, силикатные, гипсовые, шлакощелочные и т.д.

По виду заполнителей различают бетоны на плотных, пористых или специальных заполнителях.

По структуре различают бетоны плотной, поризованной, ячеистой или крупнопористой структуры.

По условиям твердения бетоны подразделяют на твердевшие в естественных условиях; в условиях тепловлажностной обработки при атмосферном давлении; в условиях тепловлажностной обработки при давлении выше атмосферного (автоклавного твердения).

По содержанию вяжущего вещества и заполнителей бетоны подразделяют на:

тощие (с пониженным содержанием вяжущего вещества и повышенным содержанием крупного заполнителя);

жирные (с повышенным содержанием вяжущего вещества и пониженным содержанием крупного заполнителя);

товарные (c соотношением заполнителей и вяжущего вещества по стандартной рецептуре).

[ 12)Композиционные материалы. Керамика]

 

Композицио́нный материа́л (КМ), компози́т — искусственно созданный неоднородный сплошной материал, состоящий из двух или более компонентов с чёткой границей раздела между ними. В большинстве композитов (за исключением слоистых) компоненты можно разделить на матрицу (или связующее) и включённые в неё армирующие элементы (или наполнители).

В композитах конструкционного назначения армирующие элементы обычно обеспечивают необходимые механические характеристики материала (прочность, жёсткость и т. д.), а матрица обеспечивает совместную работу армирующих элементов и защиту их от механических повреждений и агрессивной химической среды.

Для создания композиции используются самые разные армирующие наполнители и матрицы. Это —гетинакс и текстолит (слоистые пластики из бумаги или ткани, склеенной термореактивным клеем), стекло- и графитопласт (ткань или намотанное волокно из стекла или графита, пропитанные эпоксидными клеями), фанера. Есть материалы, в которых тонкое волокно из высокопрочных сплавов залито алюминиевой массой.

Классификация:

Композиты обычно классифицируются по виду армирующего наполнителя:

· волокнистые (армирующий компонент — волокнистые структуры);

· слоистые;

· наполненные пластики (армирующий компонент — частицы)

· насыпные (гомогенные),

· скелетные (начальные структуры, наполненные связующим).

Плюсы:

высокая удельная прочность (прочность 3500 МПа)

высокая жёсткость (модуль упругости 130…140 — 240 ГПа)

высокая износостойкость

высокая усталостная прочность

из КМ возможно изготовить размеростабильные конструкции

легкость

Минусы:

Высокая стоимость

Низкая ударная вязкость.

Высокий удельный объем.

Токсичность.

Керамика.

Керамика - неорганические минеральный материал, получаемый из отфармованного минерального сырья путем спекания (воздействием высокой температуры с последующим охлаждением). Структура состоит из кристаллической стекловидной, аморфной и газовой фаз. Кристаллическая составляющая является основой.

Самый простейший пример керамики - глина, прошедшая обжиг.

Основные оксиды: Al2O3, MgO, ZnO.

Технологическая схема производства керамической:

Приготовление шликера (используемая в производстве фарфора кашеообразная, мягкая фарфоровая масса, состоящая из каолина, кварца и полевого шпата)

Формовка изделия;

Сушка;

Приготовление глазури и глазуровка (эмалировка);

Обжиг

 

Ситалл - материал, получаемый путем кристаллизации стекол. ПО структуре занимают промежуточное место между стеклом и керамикой, содержание кристаллической среды 30-95%; пористость отсутствует; высокая прочность, жаростойкость, износостойкость.

Стекло - твердый, аморфный термопластичный материал, получаемый переохлаждением расплава различных лксидов. Стекла образуют кислотные и основные оксиды.

Кислотные: SiO2, Al2O3. Основные: K2O, CaO, NaO. SiO2 - основа любого неорганического стекла;

Классификация керамики по химическому составу:

1. Оксидная керамика. Данные материалы состоят из чистых оксидов Al2O3, SiO2, ZrO2, MgO, CaO, BeO, ThO2, TiO2, UO2, оксидов редкоземельных металлов, их механических смесей (ZrO2-Al2O3 и др.), твердых растворов (ZrO2-Y2O3, ZrO2-MgO и др.), химических соединений (муллит 3Al2O3×2SiO2 и др.)

2. Безоксидная керамика. Этот класс составляют материалы н<



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-04-04 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: