Превращения при отпуске закаленной стали.




Операция отпуска проводится после закалки стали. Само название этой операции говорит о том, что сталь как бы отпускается из напряженного, закаленного состояния. В результате снижается хрупкость, повышается вязкость и сопротивление ударной нагрузке. Структура закаленной стали представляет собой пересыщенный твердый раствор углерода в железе, что вызывает сильные внутренние напряжения. Вследствие этого атомная решетка искажается, превращаясь из кубической в тетрагональную, а сталь приобретает хрупкость и легко разрушается при ударных нагрузках. Если же устранить внутренние напряжения, то, не снижая прочности и твердости стали, можно уменьшить хрупкость и тем самым существенно улучшить ее эксплуатационные свойства, что и достигается операцией отпуска с нагревом до температуры 150—200°С. Это так называемый низкий отпуск. Что же происходит при низком отпуске? Под действием повышенной температуры атомы углерода приобретают более высокую подвижность и благодаря этому выходят из твердого раствора. Они образуют с атомами железа химическое соединение — карбид Fe2C При этом внутренние напряжения в атомной решетке железа уменьшаются, и в результате снижается хрупкость закаленной стали. Образующиеся карбиды имеют настолько малые размеры, что их невозможно обнаружить с помощью микроскопа, поэтому видимых изменений в микроструктуре после низкого отпуска не наблюдается. Зато свойства стали существенно улучшаются.

Низкий отпуск применяют в тех случаях, когда после закалки необходимо сохранить высокую твердость и износостойкость стали. Для завершения всех процессов, происходящих при низком отпуске, достаточно дать выдержку при температуре 200°С в течение 1 ч. Хотя при этом не весь углерод выходит из раствора, однако продолжение выдержки не дает существенных изменений. Твердость стали после низкого отпуска зависит от содержания в ней углерода. В высокоуглеродистых сталях, содержащих более 0,7% С, она бывает обычно в пределах HRC 59—63.

При повышении температуры отпуска до 200—300°С происходят изменения в структуре: остаточный аустенит превращается в отпущенный мартенсит. В легированных сталях это превращение происходит при более высокой температуре. В некоторых высоколегированных сталях, например, в быстрорежущих, которые содержат до 35% остаточного аустенита, превращение его в мартенсит происходит при нагреве свыше 500°С.

При дальнейшем повышении температуры до 300— 400°С в углеродистой закаленной стали полностью завершается процесс выделения углерода из твердого раствора. Карбид Fe2C преобразуется в знакомый нам цементит Fe3C. Иными словами, в результате отпуска при 300—400°С происходит распад мартенсита и образуется структура, состоящая из феррита, в котором будут равномерно распределены мельчайшие кристаллики цементита. Такая структура называется трооститом. Твердость троостита приблизительно HRC 45—50.

При повышении температуры отпуска до 450°С и более происходят существенные изменения как в структуре, так и в свойствах закаленной стали, обусловленные укрупнением цементитных частиц: мелкие частицы как бы сливаются с более крупными. Такой процесс называется коагуляцией цементита. При температуре отпуска свыше 450°С частицы цементита становятся настолько крупными, что их без труда можно различить при наблюдении под микроскопом. Такую ферритно-цементитную структуру, полученную в результате закалки и отпуска при указанной температуре, называют сорбитом. Таким образом, сорбит отличается от троостита только тем, что частицы цементита в нем более крупные. Твердость сорбита приблизительно HRC 30—45.

Если теперь повысить температуру отпуска до 600— 650°С, то частицы цементита укрупнятся настолько, что структура по виду будет приближаться к обычному перлиту, который был до закалки. Тем не менее будут и отличия: перлит, полученный после закалки и отпуска, будет иметь более однородное мелкодисперсное строение. Это способствует улучшению свойств стали, и потому сочетание закалки с высоким отпуском носит название улучшения.

При высоком отпуске образуется сорбитная структура. При этом значительно снижается твердость стали, но зато существенно повышается ее вязкость и сопротивление ударной нагрузке (ударная вязкость). Кроме того, как установлено исследованиями, высокий отпуск почти полностью (на 90—95%) устраняет внутренние напряжения, поэтому его применяют для многих ответственных деталей и инструментов, работающих в условиях динамической нагрузки: валов, шатунов, молотовых штампов и др.

Алюминий и его сплавы

Алюминий имеет огромное значение в промышленности из-за высокой пластичности, большой тепло и электропроводности, слабой коррозии, т.к. образующая на поверхности пленка Al2O3 защищает металл от окисления. Из него делают тонкий прокат, фольгу, любой профиль прессованием и другими видами обработки давления. Из него изготавливают разного типа провода, применяют в электроаппаратуре.
Как конструкционный материал алюминий чаще всего применяется в сплавах со следующими легирующими элементами: Cu, Zn, Mg, Ni, Fe, Mn, Ti, Si, Cr, которые формируют упрочняющие зоны и фазы.

Сплав алюминия с медью называется дуралюминием (дюраль); сплав с кремнием – силумин – только литейный сплав. Сплав с марганцем – АМц одновременно повышает коррозионную стойкость; Ni, Ti, Cr, Fe повышает жаропрочность сплавов, затормаживая процесс диффузии; литий и бериллий способствуют возрастанию модуля упругости.

Все алюминиевые сплавы можно разделить на деформируемые (получают
лист, трубы, профиль, паковки, штамповки) и литейные – для фасонного литья.
Сплавы алюминия нашли широкое применение прежде всего в авиации,
автомобилестроении, судостроении и др.отраслях народного хозяйства.

Алюминиевые сплавы подразделяются на деформируемые и литейные. Порошковые материалы, композиты деформируются, а иногда льются.

Неупрочняемые сплавы Al – Mn (АМц) и Al – Mg (АМг). Это коррозион-
ностойкие материалы, идущие на изготовление бензо -, маслобаков, корпусов
судов.

Упрочняемые сплавы Al -Mg – Si (АВ, АД31, АД33) идут для изготовления лопастей и деталей кабин вертолетов, барабанов колес гидросамолетов.

Дуралюмины Al – Cu – Mg (Д1, Д16, Д18, Д19, ВД17, В93, В95, В96 и др.).

Дюраль содержит
от 2 до 4,5 Cu и, кроме того, он часто легируется Mg (~0.5%), Mn, Fe, Be, Si, Zn. Перечисленные элементы образуют ряд химических соединений, растворяемых в алюминии – матрице (CuAl2, Mg2Si) и нерастворимых Fe, Mn, Cu. Механические свойства после закалки и старения (отпуска) зависят от температуры закалки и старения, скорости охлаждения.

Высокопрочные сплавы Al – Zn – Mg – Cu (В93, В95, В96Ц) более прочны, чем дюралюминий, обладают лучшей коррозионной стойкостью и применяются для изготовления шпангоутов, лонжеронов, стрингеров. Алюминиевые сплавы часто применяются для изготовления поковок штамповок лопастей винта самолета, рам, поясов лонжеронов, крепежных деталей. Это сплавы АК1, АК6, АК8, АК4.

Жаропрочные алюминиевые сплавы системы Al – Cu – Mn (Д20, Д21) и Al – Cu – Mg – Fe – Ni (АК – 4 – 1) применяют для изготовления поршней, головок цилиндров, дисков, лопаток компрессоров и т.д., работающих при температурах до 300°С. Жаропрочность достигается за счет легирования Ni, Fe, Ti, (Д20, Д21, АК – 4 – 1).

Литейные алюминиевые сплавы применяются для изготовления литых заготовок. Это сплавы Al – Si (силумины), Al – Cu (дюрали), Al – Mg (Амг). К силуминам относятся сплавы Al – Si (AЛ – 2), Al – Si – Mg (АЛ – 4, АЛ – 9, АЛ – 34), которые упрочняются термообработкой. Силумины хорошо льются, обрабатываются резанием, свариваются, анодируются, пропитываются лаками.

Высокопрочные и жаропрочные литейные сплавы систем Аl – Cu – Mn (АЛ – 19), Al – Cu – Mn – Ni (АЛ – 33), Al – Si – Cu – Mg (АЛ – 3, АЛ – 5). Легированные Ti, Cr, Ni, Cl, Zn жаропрочны до 300°С, хорошо термообрабатываются. Из них изготавливают поршни, головки блока, цилиндров и т.п.

Коррозионностойкие литейные алюминиевые сплавы систем Al – Mg (АЛ8, АЛ27) и Al – Mg – Zn (АЛ24) хорошо льются и свариваются. Легирование Be, Ti, Zn вызывает изменение зерна. Они термообрабатываются.

Спеченный алюминиевый порошок (САП) получается прессованием (700 МПа) при температуре 500 – 600°С алюминиевой пудры. САП характеризуется высокой прочностью и жаропрочностью до 500°С.

Спеченные алюминиевые сплавы систем Al-Si-Ni (СОС 1), Al-Si-Fe
(СОС 2) иногда легированные Mn,Cr, Zn, Ti, V закаливаются, стареют, жаро-
прочны до 350°С.

Композиционные алюминиевые сплавы армируются борными волокнами (АД1, АД33, ВКА – 1, ВКА – 2), стальной проволокой (КАС-1, КАС-1А) прочны, гнутся, обладают большой ударной вязкостью, жаропрочностью, усталостью, прочностью.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-04-04 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: