Факторы неспецифической резистентности организма




В неспецифической защите от микробов и антигенов важную роль играют три барьера: механический, фи­зико-химический и иммунобиологический. Основными защитными факторами этих ба­рьеров являются кожа и слизистые оболочки, ферменты, фагоцитирующие клетки, комп­лемент, интерферон, ингибиторы сыворотки крови.

Иммунобиологическая защита

Фагоцитоз открытый и изученный И. И. Мечниковым, является одним из ос­новных мощных факторов, обеспечивающих резистентность организма, защиту от ино­родных веществ, в том числе микробов.

Механизм фагоцитоза состоит в поглоще-• нии, переваривании, инактивации инород­ных для организма веществ специализиро­ванными клетками — фагоцитами.

Стадии фагоцитоза. Процесс фагоцитоза, т. е. поглощения инородного вещества клетка-мишенями, имеет несколько стадий: 1) приближение фагоцита к объекту поглощения (хемотаксис); 2) адсорбция поглощаемого вещества на по­верхности фагоцита; 3) поглощение вещества путем инвагинации клеточной мембраны с об­разованием в протоплазме фагосомы (вакуоли, пузырьки), содержащей поглощенное вещест­во; 4) слияние фагосомы с лизосомой клетки с образованием фаголизосомы; 5) активация лизосомальных ферментов и переваривание вещества в фаголизосоме с их помощью.

Особенности физиологии фагоцита. Для осу­ществления своих функций (рис. 9.2) фаго­циты располагают обширным набором ли-тических ферментов, а также продуцируют перекисные и NO ион-радикалы, которые могут поражать мембрану (или стенку) клетки на расстоянии или после фагоцитирования. На цитоплазматической мембране находятся рецепторы к компонентам комплемента, Fc-фрагментам иммуноглобулинов, гистамину, а также антигены гистосовместимости I и II класса. Внутриклеточные лизосомы содержат до 100 различных ферментов, способных «пе­реварить» практически любое органическое вещество.

Фагоциты имеют развитую поверхность и очень подвижны. Они способны активно пе­ремещаться к объекту фагоцитоза по гради­енту концентрации особых биологически ак­тивных веществ — хемоаттрактантов. Такое передвижение получило название хемотаксис

.

Адсорбция вещества на поверхности фа­гоцита осуществляется за счет слабых хи­мических взаимодействий и происходит ли­бо спонтанно, неспецифически, либо путем связывания со специфическими рецепторами (к иммуноглобулинам, компонентам компле­мента). «Захват» фагоцитом вещества вызыва­ет выработку большого количества перекис-ных радикалов («кислородный взрыв) и N0'. которые вызывают необратимые, летальные повреждения как цельных клеток, так и отде­льных молекул.

Поглощение адсорбированного на фаго­ците вещества происходит путем эндоцито-за. Это энергозависимый процесс, связан­ный с преобразованием энергии химических связей молекулы АТФ в сократительную ак­тивность внутриклеточного актина и мио­зина. Окружение фагоцитируемого вещества бислойной цитоплазматической мембраной и образование изолированного внутриклеточ­ного пузырька — фагосомы напоминает «за­стегивание молнии». Внутри фагосомы про­должается атака поглощенного вещества активными радикалами. После слияния фа­госомы и лизосомы и образования в цитоп­лазме фаголизосомы происходит активация лизосомальных ферментов, которые разру­шают поглощенное вещество до элементар­ных составляющих, пригодных для дальней­шей утилизации для нужд самого фагоцита. Непереваренные остатки вещества «хоронят­ся» вместе с погибшим от старости фагоци­том. Ферментативное расщепление вещества может также происходить внеклеточно при выходе ферментов за пределы фагоцита.

Фагоциты, как правило, «переваривают» за­хваченные бактерии, грибы, вирусы, осущест­вляя таким образом завершенный фагоцитоз. Однако в ряде случаев фагоцитоз носит неза­вершенный характер: поглощенные бактерии (например, иерсинии) или вирусы (например, возбудитель ВИЧ-инфекции, натуральной ос-пы) блокируют ферментативную активность фагоцита, не погибают, не разрушаются и да­же размножаются в фагоцитах. Такой процесс получил название незавершенный фагоцитоз.

 

комплемент является компонен­том многих иммунолитических реакций, направ­ленных на освобождение организма от микробов и других чужеродных клеток и антигенов (на­пример, опухолевых клеток, трансплантата).

Механизм активации комплемента очень сложен и представляет собой каскад фер­ментативных протеолитических реакций, в

результате которого образуется активный ци-толитический комплекс, разрушающий стен­ку бактерии и других клеток. Известны три пути активации комплемента: классический, альтернативный и лектиновый (рис. 9.3). По классическому пути комплемент активирует­ся комплексом антиген-антитело. Для этого достаточно участия в связывании антигена одной молекулы IgM или двух молекул IgG. Процесс начинается с присоединения к ком­плексу АГ+АТ компонента С1, который рас­падается на субъединицы Clq, Clr и Cls. Далее в реакции участвуют последовательно активированные «ранние» компоненты ком-

племента в такой последовательности: С4, С2, СЗ. Эта реакция имеет характер усиливающе­гося каскада, т. е. когда одна молекула пре­дыдущего компонента активирует несколько молекул последующего. «Ранний» компонент комплемента СЗ активирует компонент С5, который обладает свойством прикрепляться к мембране клетки. На компоненте С5 путем последовательного присоединения «поздних» компонентов С6, С7, С8, С9 образуется лити-ческий или мембраноатакующий комплекс, который нарушает целостность мембраны (образует в ней отверстие), и клетка погибает в результате осмотического лизиса.

Альтернативный путь активации комплемен­та проходит без участия антител. Этот путь характерен для защиты от грамотрицательных микробов. Каскадная цепная реакция при аль­тернативном пути начинается с взаимодействия антигена (например, полисахарида) с протеи­нами В, D и пропердином (Р) с последующей активацией компонента СЗ. Далее реакция идет так же, как и при классическом пути — образу­ется мембраноатакующий комплекс.

Пектиновый путь активации комплемента также происходит без участия антител. Он ини­циируется особым маннозосвязывающим белком сыворотки крови, который после взаимодейс­твия с остатками маннозы на поверхности мик­робных клеток катализирует С4. Дальнейший каскад реакций сходен с классическим путем.

В процессе активации комплемента обра­зуются продукты протеолиза его компонен­тов — субъединицы СЗа и СЗЬ, С5а и С5Ь и дру­гие, которые обладают высокой биологической активностью. Например, СЗа и С5а принимают участие в анафилактических реакциях, являют­ся хемоаттрактантами, СЗЬ — играет роль в оп-сонизации объектов фагоцитоза, и т. д. Сложная каскадная реакция комплемента происходит с участием ионов Са2+ и Mg2+.

Лизоцим

Особая и немаловажная роль в естествен­ной резистентности принадлежит лизоциму.

Механизм действия лизо-цима сводится к разрушению гликопротеидов (мурамилдипептида) клеточной стенки бакте­рий, что ведет к их лизису и способствует фаго­цитозу поврежденных клеток. Следовательно,

лизоцим обладает бактерицидным и бактери-остатическим действием. Кроме того, он акти­вирует фагоцитоз и образование антител.

.

9.2.3.5. Интерферон

Интерферон относится к важным защитным белкам иммунной системы.

В зависимости от того, какими клетками синтезируется интерферон, выделя­ют три типа: а, beta и gama-интерфероны.

Альфа-интерферон вырабатывается лейко­цитами и он получил название лейкоцитар­ного; бета- интерферон называют фиброблас-тным, поскольку он синтезируется фиброб-ластами — клетками соединительной ткани, а гамма-интерферон — иммунным, так как он вырабатывается активированными Т-лимфо-цитами, макрофагами, естественными килле­рами, т. е. иммунными клетками.

Механизм действия интерферона сложен. Интерферон непосредственно на вирус вне клетки не действует, а связывается со спе­циальными рецепторами клеток и оказыва­ет влияние на процесс репродукции вируса внутри клетки на стадии синтеза белков.

Действие интерферона тем эффективнее, чем раньше он начинает синтезироваться или пос­тупать в организм извне. Поэтому его использу­ют с профилактической целью при многих ви­русных инфекциях, например гриппе, а также с лечебной целью при хронических вирусных инфекциях, таких как парентеральные гепати­ты (В, С, D), герпес, рассеянный склероз и др. Интерферон дает положительные результаты при лечении злокачественных опухолей и забо­леваний, связанных с иммунодефицитами.

Интерфероны обладают видоспецифичнос-тью, т. е. интерферон человека менее эффек­тивен для животных и наоборот. Однако эта видоспецифичность относительна.

9.2.3.6. Защитные белки сыворотки крови

К белкам острой фазы относятся С-реактив-ный белок, противовоспалительные и другие белки, которые вырабатываются в печени в ответ на повреждение тканей и клеток. С-реактивный белок способствует опсонизации бактерий и является индикатором воспаления.

Маннозосвязывающий белок — нормальный протеин сыворотки крови. Способен прочно связываться с остатками маннозы, находя­щимися на поверхности микробных клеток, и опсонизировать их. Способствует фагоцитозу, активирует систему комплемента по лектино-вому пути.

Пропердин — представляет собой гамма-глобулин нормальной сыворотки крови. Способствует активации комплемента по аль­тернативному пути и таким образом участвует во многих иммунологических реакциях,

Фибронектин — универсальный белок плаз­мы и тканевых жидкостей, синтезируемый макрофагами. Обеспечивает опсонизацию ан­тигенов и связывание клеток с чужеродными веществами, например фагоцитов с антигенами и микробами, экранирует дефекты эндотелия сосудов, препятствуя тромбообразованию.

Бета-лизины — белки сыворотки крови, синтезируемые тромбоцитами. Оказывают повреждающее действие на цитоплазматичес-кую мембрану бактерий.

Кожа и слизистые оболочки

Многослойный эпителий здоровой кожи и слизистых оболочек обычно непроница­ем для микробов и макромолекул. Однако при малозаметных микроповреждениях, вос­палительных изменениях, укусах насекомых, ожогах и травмах через кожу и слизистые могут проникать микробы и макромолекулы. Вирусы и некоторые бактерии могут прони­кать в макроорганизм межклеточно, легочно и с помощью фагоцитов, перенося­щих поглощенных микробов через эпителий слизистых оболочек. Свидетельством этому является инфицирование в естественных ус­ловиях через слизистые верхних дыхательных путей, легких, желудочно-кишечного тракта и урогенитального тракта, а также возможность пероральной и ингаляционной иммунизации живыми вакцинами, когда вакцинный штамм бактерий и вирусов проникает через слизис­тые оболочки желудочно-кишечного тракта и дыхательных путей.

Физико-химическая защита

На чистой и неповрежденной коже обычно содержится мало микробов, так как потовые и сальные железы постоянно выделяют на ее поверхность вещества, обладающие бактери­цидным действием (уксусная, муравьиная, молочная кислоты).

Желудок также является барьером для про­никающих перорально бактерий, вирусов, ан­тигенов, так как последние инактивируются и разрушаются под влиянием кислого содер­жимого желудка (рН 1,5—2,5) и ферментов. В кишечнике инактивирующими факторами служат ферменты и бактериоцины, образуе­мые нормальной микробной флорой кишеч­ника, а также трипсин, панкреатин, липаза, амилазы и желчь.

 

 

Приобретенный(специфический) иммунитет возникает после того, как человек перенес инфекционную болезнь, поэтому его называют также постинфекционным. Приобретенный иммунитет индивидуален, потомству не передается. Он специфичен, так как предохраняет организм только от перенесенной болезни. Длительность постинфекционного иммунитета различна. При одних заболеваниях, например чуме, туляремии, коклюше, кори, эпидемическом паротите, он пожизненный. Повторные заболевания при них возможны крайне редко. Длительный приобретенный иммунитет возникает также после заболевания брюшным тифом, холерой, натуральной и ветряной оспой, дифтерией, сыпным тифом, сибирской язвой. При некоторых инфекциях продолжительность приобретенного иммунитета невелика и человек может несколько раз болеть одной и той же болезнью. Невосприимчивость к той или иной инфекционной болезни возникает не только при выраженной форме заболевания, но и при легких стертых и даже бессимптомных формах.


При большинстве инфекционных заболеваний развитие невосприимчивости к данному возбудителю идет параллельно освобождению организма от микробов, и после выздоровления человек освобождается от возбудителя. Иногда эту форму иммунитета называют стерильной. Существует также нестерильный, или инфекционный, иммунитет. Он заключается в том, что невосприимчивость человека к повторному заражению микробом связана с наличием в организме того же возбудителя. Как только организм освобождается от него, человек снова становится восприимчивым к данному инфекционному заболеванию. Инфекционный иммунитет существует при туберкулезе, сифилисе, глубоких микозах, малярии.


Различают антибактериальный иммунитет, когда защитные реакции организма, направлены на уничтожение микробов, и антитоксический, когда происходит обезвреживание токсических продуктов микроорганизмов. Особенно большое значение антитоксический иммунитет имеет при столбняке, ботулизме, дифтерии, газовой гангрене, при которых экзотоксины возбудителей поражают различные органы и системы.


Пассивный иммунитет новорожденных также является естественной формой иммунитета. Он обусловлен передачей особых веществ — антител — из организма матери плоду через плаценту или через молоко матери новорожденному. Продолжительность такого иммунитета невелика (всего несколько месяцев), но роль его очень важна. Обычно дети, обладающие таким иммунитетом, маловосприимчивы к заражению и заболеваниям в первые 6 мес жизни.


Искусственный иммунитет. Его создают в организме искусственно, чтобы предупредить возникновение инфекционной болезни, а также используют для лечения.

 

Различают активную и пассивную формы искусственного иммунитета.


Активный искусственный иммунитет создают у человека при введении ему препаратов, которые получают из убитых или ослабленных микробов (вакцины) либо обезвреженных токсинов возбудителей (анатоксины). Продолжительность активного искусственного иммунитета при использовании вакцин из живых ослабленных микробов и анатоксинов 3—5 лет, а в случае применения вакцин из убитых микробов — до 1 года.


Пассивный искусственный иммунитет возникает при введении в организм человека специальных защитных веществ, которые получили название иммунных антител. Они содержатся в сыворотках переболевших людей. Антитела (иммунные сыворотки) можно получить, специально иммунизируя (заражая) животных определенными видами возбудителей.


Пассивный искусственный иммунитет сохраняется недолго, около месяца, до тех пор, пока существуют антитела в организме. Затем антитела разрушаются и выводятся из организма.


Местный иммунитет как отдельная форма иммунитета был выделен А. М. Безредкой, который считал, что существует местная невосприимчивость различных органов и тканей к возбудителю. Современные достижения иммунологии во многом подтверждают правомерность теории местного иммунитета Безредки, однако механизмы возникновения местной невосприимчивости тканей намного сложнее, чем он предполагал.

 

Антитоксический иммунитет характеризуется нейтрализацией антителамиантитоксинами микробных экзотоксинов, противовирусный—обусловлен нейтрализующим действием противовирусных антител на вирионы. Иммунная защита организма — основная причина несовместимости тканей при трансплантации (пересадка органов и тканей), что обусловило развитие нового направления в иммунологии — проблемы трансплантационного иммунитета.

Приобретенный иммунитет может быть стерильным и нестерильным. Стерильный иммунитет характеризуется полным освобождением организма от возбудителя заболевания. Нестерильный, или инфекционный, иммунитет обусловлен наличием в организме микробавозбудителя. Впервые такой иммунитет описал Р. Кох в 1891 г., наблюдая его при туберкулезе. Продолжительность инфекционного иммунитета зависит от того, сколько времени в организме будет находиться инфекционный агент. Например, наличие в организме человека туберкулезного очага обусловливает невосприимчивость к новому заражению микобактериями туберкулеза.


Деление иммунитета на различные виды и формы весьма условно. Как при врожденном, так и при приобретенном иммунитете защиту организма осуществляют одни и те же системы, органы и ткани. Их функция направлена на то, чтобы поддерживать в организме определенное постоянство внутренней среды, которое можно обозначить как нормальное состояние.

Специфический иммунитет включает два компонента — гуморальный (опосредованный антителами) и клеточный. Реакции, обеспечиваемые функционированием антител, называют гуморальными реакциями иммунитета. Наиболее удобным показателем иммунитета являются антитела, поскольку именно антитела изучены в наибольшей степени по сравнению с другими компонентами иммунной системы. Гуморальный иммунитет связан с В-лимфоцитами, или В-клетками, и с их прямыми потомками, известными под названием плазматических клеток. Эти плазматические клетки обеспечивают продукцию специфических иммуноглобулинов (антител). Когда В-клетка встречается с антигеном, распознавание которого обеспечивается соответствующими антителами, начинается процесс пролиферации В-клеток. Это приводит к резкому увеличению числа лимфоцитов, способных осуществлять выработку антител к данному антигену. Репликация В-клеток и их дифференцировка в плазматические клетки регулируется в результате контакта с антигеном и взаимодействий с Т-клетками, макрофагами и комплементом.

В-лимфоциты развиваются в печени плода, а в дальнейшем — в костном мозге. Название «В» происходит от термина “ Bursa of Fabricius ” (“фабрициева сумка”) — названия специального органа у птиц, в котором происходит развитие В-клеток. У млекопитающих аналогичного органа нет. Около 10%димфоцитов, находящихся в крови, являются В-лимфоцитами. Большинство В-клеток и почти все плазматические клетки находятся в периферических лимфоидных органах — например, в селезенке, лимфатических узлах, небных миндалинах и аппендиксе.

Клеточный иммунитет контролируется Т-лимфоцитами и осуществляется лимфоцитами и макрофагами. Этот вид иммунитета связан с функционированием различных типов Т-лимфоцитов (Т-клеток) и выделяемых ими растворимых веществ — лимфокинов (интерлейкинов), которые действуют как сигналы между клетками различных типов, участвующих в обеспечении иммунного ответа.

Эти два компонента специфического иммунитета очень тесно взаимосвязаны. Т-клетки взаимодействуют с В-клетками в процессе выработки антител к большинству антигенов. Гуморальные (антительные) и клеточные иммунные реакции индуцируются при всех инфекционных болезнях, однако интенсивность и качество каждого из этих двух компонентов варьирует при различных инфекциях.

Антигены микробов

В структуре микробов определяется не­сколько типов антигенов. При этом анти­генный состав микроба во многом зависит от его эволюционного и таксономического положения. Принципиальные различия име­ют антигены бактерий, вирусов, грибов и простейших.

Вместе с тем микробные антигены могут быть общими для отдельных систематических категорий. Так, существуют антигены, харак­терные для целых семейств, родов и видов. Внутри видов могут быть выделены серо­логические группы (серогруппы), варианты (серовары) или типы (серотипы). Антигены микробов используют для получения вакцин и сывороток, необходимых для диагностики, профилактики и лечения инфекционных или аллергических заболеваний, а также в диа­гностических реакциях.

Антигены бактерий

В структуре бактериальной клетки разли­чают жгутиковые, соматические, капсуль-ные и некоторые другие антигены (рис. 10.2). Жгутиковые, или Н-антигены, локализуют­ся в локомоторном аппарате бактерий — их жгутиках. Они представляют собой эпитопы сократительного белка флагеллина. При на­гревании флагеллин денатурирует, и Н-ан-тиген теряет свою специфичность. Фенол не действует на этот антиген.

Соматический, или О-антиген, связан с клеточной стенкой бактерий. Его основу со­ставляют ЛПС. О-антиген проявляет термос­табильные свойства — он не разрушается при длительном кипячении. Однако соматичес­кий антиген подвержен действию альдегидов (например, формалина) и спиртов, которые нарушают его структуру.

Если проиммунизировать животное жи­выми бактериями, имеющими жгутики, то будут вырабатываться антитела, на­правленные одновременно против О- и Н-антигенов. Введение животному про­кипяченной культуры стимулирует био­синтез антител к соматическому антигену. Культура бактерий, обработанная фено-

лом, вызовет образование антител к жгу­тиковым антигенам.

Капсульные, или К-антигены, располагаются наповерхности клеточной стенки. Встречаются у бактерий, образующих капсулу. Как правило, К-антигены состоят из кислых полисахаридов (уроновые кислоты). В то же время у бациллы сибирской язвы этот антиген построен из по­липептидных цепей. По чувствительности к нагреванию различают три типа К-антигена: А, В, и L. Наибольшая термостабильность ха­рактерна для типа А, он не денатурирует даже при длительном кипячении. Тип В выдержи­вает непродолжительное нагревание (около 1 часа) до 60 °С. Тип L быстро разрушается при этой температуре. Поэтому частичное удале­ние К-антигена возможно путем длительного кипячения бактериальной культуры.

На поверхности возбудителя брюшного ти­фа и других энтеробактерий, которые облада­ют высокой вирулентностью, можно обнару­жить особый вариант капсульного антигена. Он получил название антигена вирулентнос­ти, или Vi-антигена. Обнаружение этого ан­тигена или специфичных к нему антител име­ет большое диагностическое значение.

Антигенными свойствами обладают также бактериальные белковые токсины, ферменты и некоторые другие белки, которые секрети-руются бактериями в окружающую среду (на­пример, туберкулин). При взаимодействии со специфическими антителами токсины, фер­менты и другие биологически активные моле­кулы бактериального происхождения теряют свою активность. Столбнячный, дифтерий­ный и ботулинический токсины относятся к числу сильных полноценных антигенов, поэ­тому их используют для получения анатокси­нов для вакцинации людей.

В антигенном составе некоторых бактерий выделяется группа антигенов с сильно выра­женной иммуногенностью, чья биологическая активность играет ключевую роль в формиро­вании патогенности возбудителя. Связывание таких антигенов специфическими антителами практически полностью инактивирует виру­лентные свойства микроорганизма и обеспечи­вает иммунитет к нему. Описываемые антиге­ны получили название протективных. Впервые протективный антиген был обнаружен в гной-

ном отделяемом карбункула, вызванного ба­циллой сибирской язвы. Это вещество являет­ся субъединицей белкового токсина, которая ответственна за активацию других, собственно вирулентных субъединиц — так называемого отечного и летального факторов.

Антигены вирусов

В структуре вирусной частицы различают несколько групп антигенов: ядерные (или ко­ровью), капсидные (или оболочечные) и су-перкапсидные. На поверхности некоторых вирусных частиц встречаются особые V-ан-тигены— гемагглютинин и фермент нейра-минидаза. Антигены вирусов различаются по происхождению. Часть из них — вирусоспе-цифические. Информация об их строении картирована в нуклеиновой кислоте вируса. Другие антигены вирусов являются компо­нентами клетки хозяина (углеводы, липиды). они захватываются во внешнюю оболочку ви­руса при его рождении путем почкования.

Антигенный состав вириона зависит от стро­ения самой вирусной частицы. Антигенная специфичность простоорганизованных виру­сов связана с рибо- и дезоксирибонуклеопро-теинами. Эти вещества хорошо растворяются в воде и поэтому обозначаются как S-антиге-ны (от лат. solutio — раствор). У сложноорга-низованных вирусов часть антигена связана с нуклеокапсидом, а другая — локализуется во внешней оболочке — суперкапсиде.

Антигены многих вирусов отличаются вы­сокой степенью изменчивости. Это связано с постоянным мутационным процессом, кото­рый претерпевает генетический аппарат вирус­ной частицы. Примером могут служить вирус гриппа, вирусы иммунодефицитов человека.

Процессы, происходящие с антигеном в макроорганизме

Процесс проникновения антигена и его кон­такт с иммунной системой протекают поэтапно и имеют свою динамику во времени. При этом на каждом этапе появления и распространения в макроорганизме антиген сталкивается с мощ­ным противодействием развитой сети разнооб­разных факторов иммунитета (см. табл. 9.3.).

Существуют разнообразные пути проник­новения и распространения антигена в мак- роорганизме. Они могут появляться внутри самого макроорганизма (эндогенное проис­хождение) или поступать извне (экзогенное происхождение). Экзогенное происхождение предполагает, что антиген может проникнуть в макроорганизм:

1) через дефекты кожных покровов и сли­зистых (как результат ранений, микротравм, укусов насекомых, расчесов и др.);

2) путем всасывания в желудочно-кишечном тракте (эндоцитоз эпителиальными клетками);

3) межклеточно (при незавершенном фа­гоцитозе, облигатном или факультативном внутриклеточном паразитировании микроб может разноситься по всему организму);

4) чресклеточно (так распространяются об-лигатные внутриклеточные паразиты, напри­мер, вирусы).

В организме антиген разносится лимфой (лимфогенный путь) и кровью (гематогенный путь) по различным органам и тканям. При этом он распределяется не хаотично — анти­ген чаще всего фильтруется в лимфатических узлах, а также в лимфоидной ткани печени, селезенки, легких и других органов, где всту­пает в контакт с разнообразными факторами иммунной защиты.

Ответная реакция этих факторов заключа­ется в инактивации и удалении (элиминации) антигена из макроорганизма. Первыми всту­пают в действие факторы врожденного им­мунитета, так как эта система, несмотря на ее многообразие и сложность отдельных ее ком­понентов, не требует длительного времени для активации. Если антиген не был инактивиро-ван или элиминирован в течение 4 ч, в ак­тивную работу включается система факторов приобретенного иммунитета. Эффективность их действия обеспечивается путем специфи­ческого распознавания «свой-чужой» и выра­ботки соответствующих факторов регуляции и иммунной защиты (специфические антите­ла, клоны антигенореактивных лимфоцитов).

Совокупный эффект всех звеньев и уровней иммунной защиты макроорганизма, незави­симо от степени их вовлечения в процесс, направлен на:

1) связывание и блокирование биологичес­
ки активных участков молекулы антигена;

2) разрушение или отторжение антигена;

3) полную утилизацию, изоляцию (инкап­суляции) или выведение остатков антигена из макроорганизма.

В итоге достигается полное или частич­ное восстановление гомеостаза. Параллельно формируется иммунная память, толерант­ность или аллергия.

антитела — это ga- глобулины, вырабатыва­емые в ответ на введение антигена, способ­ные специфически связываться с антигеном и участвовать во многих иммунологических реакциях. Антитела синтезируются В-лим-фоцитами и их потомками — плазматичес-

кими клетками.

Иммуноглобулины существуют в циркули­рующей форме, в виде рецепторных молекул на иммунокомпетентных клетках и миелом-ных белков. Циркулирующие антитела под­разделяются на сывороточные и секреторные. К антителам могут быть также отнесены белки Бенс-Джонса, которые являются фрагмента­ми молекулы lg (его легкая цепь) и синтезиру­ются в избытке при миеломной болезни.

Строение и функцию антител изучали мно­гие видные ученые. П. Эрлих (1885) пред­ложил первую теорию гуморального имму­нитета. Э.Беринг и С. Китазато (1887) по­лучили первые антитоксические сыворотки к дифтерийному и столбнячному токсинам. А. Безредка (1923) разработал метод безопас­ного введения пациентам лечебных иммунных сывороток. Уже в наши дни большая заслуга в расшифровке строения молекулы Ig при­надлежит Д. Эдельману и Р. Портеру (1959), а разгадка многообразия антител — трудам Ф. Бернета (1953) иС. Тонегавы (1983).

Вследствие высокой специфичности и зна­чимости в формировании гуморального имму­нитета, антитела используют для диагностики, профилактики и лечения соматических и ин­фекционных заболеваний, выделения и очист- ки биологически активных веществ. Для этого на основе специфических иммуноглобулинов созданы соответствующие иммунобиологичес­кие препараты (лечебные и диагностические сыворотки, диагностикумы и пр.).

11.1.2. Молекулярное строение антител

Иммуноглобулины являются гликопроте-идами. Их молекула состоит из нескольких соединенных вместе полипептидных цепей, стабилизированных сахаридными остатками. При нагревании выше 60 °С молекула Ig дена­турируется. Иммуноглобулины различаются по структуре, атигенному составу, а также по выполняемым функциям.

Молекулы Ig, несмотря на их видимое раз­нообразие, имеют универсальное строение (рис. 11.1). Если молекулу Ig обработать 2-мер-каптоэтанолом, то она распадется на 2 пары полипептидных цепей: две тяжелых (550-660 аминокислотных остатков, молекулярный вес 50 кДа) и две легких (220 аминокислотных остатков, молекулярный вес — 20—25 кДа). Обозначают их как Н- (от англ. heavy — тя­желый) и L- (от англ. light — легкий) цепи.

Тяжелые и легкие цепи связаны между собой попарно дисульфидными связями (-S-S-).

Между тяжелыми цепями также есть ди-сульфидная связь. Это так называемый «шар­нирный» участок. Такой тип межпептидно­го соединения придает структуре молекулы динамичность — он позволяет легко менять конформацию в зависимости от окружающих условий и состояния. Шарнирный участок ответствен за взаимодействие с первым ком­понентом комплемента (С1) и активацию его по классическому пути.

Легкие и тяжелые полипептидные цепи молекулы Ig имеют определенные варианты структуры или типы. Они определяются пер­вичной аминокислотной последовательнос­тью цепей и степенью их гликозилирования. Легкие цепи бывают 2 типов: к и лямбда. (каппа и лямбда). Тяжелых цепей известно 5 типов: а, у, ню, е и дельта (альфа, гамма, мю, эпсилон и де­льта), — которые имеют также и внутреннее подразделение. Среди многообразия цепей а-типа выделяют alfal- и alfa2- подтипы, а nu-це-пей— ню1- и ню2-. Для gama-цепи известны 4 подти­па: yl-, у2-, уЗ- гама4-.

Вторичная структура полипептидных цепей молекулы lg обладает доменным строением. Это означает, что отдельные участки цепи свернуты в глобулы (домены), которые со­единены линейными фрагментами. Домены стабилизированы внутренней дисульфидной связью. Таких доменов в составе тяжелой цепи lg бывает 4—5, а в легкой — 2. Каждый домен состоит примерно из 110 аминокислот­ных остатков.

Домены различаются по постоянству ами­нокислотного состава. Выделяют С-домены (от англ. constant — постоянный), с неизменной, или постоянной, структурой полипептидной цепи, и V-домены (от англ. variable — измен­чивый), с переменной структурой. В составе легкой цепи есть по одному V- и С-доме-ну, а в тяжелой — один V- и 3—4 С-домена. Примечательно, что не весь вариабельный домен изменчив по своему аминокислотному составу, а лишь его незначительная часть — гипервариабельная область, на долю которой приходится около 25 %.

Вариабельные домены легкой и тяжелой цепи совместно образуют участок, который специфически связывается с антигеном. Это антигенсвязывающий центр молекулы lg, или паратоп.

Гипервариабельные области тяжелой и лег­кой цепи определяют индивидуальные осо­бенности строения антигенсвязывающего центра для каждого клона lg и многообразие их специфичностей.

Обработка ферментами молекулы lg при­водит к ее гидролизу на определенные фраг­менты. Так, папаин разрывает молекулу вы­ше шарнирного участка и ведет к образо­ванию трех фрагментов (рис. 11.1). Два из них способны специфически связываться с антигеном. Они состоят из цельной легкой цепи и участка тяжелой (V- и С-домен), и в их структуру входят антигенсвязывающие участки. Эти фрагменты получили название Fab (от англ. «фрагмент, связывающийся с ан­тигеном»). Третий фрагмент, способный обра­зовывать кристаллы, получил название Fc (от англ. «фрагмент кристаллизующийся»). Он от­ветствен за связывание с рецепторами на мем-

бране клеток макроорганизма (Fc-рецепторы) и некоторыми микробными суперантигенами (например, белком А стафилококка). Пепсин расщепляет молекулу lg ниже шарнирного участка и ведет к образованию 2 фрагментов: Fc и двух сочлененных Fab, или F(ab)r

Помимо вышеописанных, в структуре моле­кул lg обнаруживают дополнительные поли­пептидные цепи. Так, полимерные молекулы IgM и IgA содержат J-nenmud (от англ. join — соединяю). Он объединяет отдельные мономе­ры в единое макромолекулярное образование (см. разд. 11.1.3) и обеспечивает превращение полимерного lg в секреторную форму.

Молекулы секреторных lg в отличие от сы­вороточных обладают особым S-пептидом (от англ. secret — секрет). Это так называемый секреторный компонент. Его молекулярная масса составляет 71 кДа, и он является be-гло­булином. Секреторный компонент — продукт деградации рецептора эпителиальной клетки к J-пептиду. Он обеспечивает перенос молекулы Ig через эпителиальную клетку в просвет ор­гана (трансцитоз) и предохраняет ее в секрете слизистых от ферментативного расщепления.

Рецепторный lg, который локализуется на цитоплазматической мембране В-лимфоци-тов и плазматических клеток, имеет допол­нительный гидрофобный трансмембранный М-пептид (от англ. membrane — мембрана). Благодаря гидрофобным свойствам он удер­живается в липидном бислое цитоплазмати­ческой мембраны, прочно, как якорь, фикси­рует рецепторный lg на мембране иммуноком-петентной клетки и проводит рецепторный сигнал через цитоплазматическую мембрану внутрь клетки.

J- и М-пептиды присоединяются к молеку­ле lg в процессе ее биосинтеза. S-пептид яв­ляется продуктом эпителиальной клетки— он присоединяется к полимерной молекуле lg при ее транслокации через эпителиальную клетку.

 

 

В зависимости от особенностей молекулярно­го строения тяжелой цепи (т. е. наличия изоти-пических, или групповых антигенных детерми-

нант) различают 5 классов, или изотипов Ig (рис. 11.2). Молекулы, содержащие тяжелую цепь ос-типа, относят к изотипу А (сокращенно IgA); IgD обладает 8-цепью, IgE— eps-цепью, IgG— у-цепью и IgM — ц-цепью. Соответственно осо­бенностям строения подтипов тяжелых цепей различают и подклассы Ig.

В структуре молекул Ig разных классов про­слеживается общая закономерность — все они построены из одних и тех же элементов, которые были описаны в разд. 9.5.1.2. Однако для каждого изотипа характерны свои осо­бенности. В частности, IgD, IgE и IgG имеют мономерное строение, IgM — практически всегда является пентамером, а молекула IgA может быть моно-, ди- и тримером. Наиболее характерные черты, присущие различным изотипам Ig, приведены в табл. 11.1.

Иммуноглобулин класса G. Изотип G состав­ляет основную массу Ig сыворотки крови. На его долю приходится 70—80 % всех сывороточ­ных Ig, при этом 50 % содержится в тканевой жидкости. Среднее содержание IgG в сыворот­ке крови здорового взрослого человека 12 г/л. Этот уровень достигается к 7—10-летнему воз­расту. Период полураспада IgG — 21 день.

IgG — мономер, имеет 2



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-05-16 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: