Расчет исполнительного устройства




 

Исполнительное устройство в данной схеме представляет собой электрический ключ. Построение электрического ключа на основе составного биполярного транзистора обусловлено следующими факторами:

1) Отсутствие реверса в разрабатываемой схеме.

2) Сравнительная простота реализации электрического ключа на биполярном транзисторе.

3) Управление состоянием транзисторного ключа осуществляется с помощью управляющего входного сигнала.

4) Малый выходной ток компаратора.

5)Требования к минимальному сопротивлению нагрузки компаратора.

Реализация электрического ключа на основе составного биполярного транзистора приводит к уменьшению мощности, получаемой от предыдущего звена схемы. В этом случае пара транзисторов VT1, VT2 работает как один, но с коэффициентом усиления по току, равным:

 

.

 

При этом транзистор VT1 потребляет меньшую мощность и, как правило, обладает значительным коэффициентом по току.

 

Рисунок 6 - Составные транзисторы.

 

Выберем составные n-p-nтранзисторы, подключенные по схеме Дарлингтона. При работе составных транзисторов в ключевом режиме их включают обычно в цепь по схеме с общим эмиттером, как изображено на рис.6. Двигатель, которым необходимо управлять, как правило, включают в коллекторную цепь транзисторов. А для компенсации противо ЭДС якоря двигателя параллельно коллекторной цепи транзисторов включают диод VD1. Например, серии Д7Б с Uобр max = 100 В. Управляющий сигнал подают в цепь базы. При работе транзисторов в ключевом режиме цепь между коллектором и эмиттером может быть либо замкнута, либо разомкнута.


Рисунок 7 - Схема транзисторного ключа.

 

Т.к мы выбрали двигатель СЛ-525 [1], то получаем следующие входные данные для транзисторного ключа:

Uном = 110 В

Pном = 75 Вт

Iном = 1,2 А

Отсюда можем найти

 

Исходя из Uном и Iном выберем транзистор VT2. Наиболее подходящим транзистором оказался: n-p-n транзистор КТ809А, который имеет следующие характеристики [7, стр.429]:

 

Статический коэффициент передачи тока в схеме с ОЭ = 30

Обратный ток коллектора IK0 max = 3 мА

Постоянный ток коллектора IK = 3 А

Постоянное напряжение эмиттер-база UБЭ max = 4 В

Постоянный ток базы IБ = 1,5 А

Постоянное напряжение коллектор-эмиттер UКЭ max = 400 В

Постоянная рассеиваемая мощность коллектора РК max = 40 Вт

Рабочая температура pn– перехода Tn раб = - 60 +1250С

Максимальная температура перехода Тп max = 1500С

Зададимся значением Еп, пусть Еп = 110 В. Определим параметры схемы, необходимые для обеспечения режима насыщения транзистора.


Рисунок 8 - Выходные ВАХ транзистора КТ809А

 

Построим нагрузочную прямую по постоянному току. Далее имеем

 

 

При этом ток в коммутируемой цепи не зависит от параметра транзистора, а зависит только от параметров внешней цепи ( и ). Для обеспечения режима насыщения и крайнего верхнего положения рабочей точки необходимо в цепь базы транзистора подать соответствующий управляющий сигнал.

Минимальное значение тока базы должно быть не меньше . В общем случае:

 

 

Для реального тока базы должно выполнятся, условие, т.е. реальный ток базы больше или равен току насыщения базы. И, как правило, с целью повышения надежности работы транзисторного ключа при различных температурах, а также для удобства замены транзистора в случае выхода из строя, эти величины связывают через степень насыщения S. Но в нашем случае, т.к. мы используем схему на составных транзисторах, то достаточно задаться значением S, только для транзистора VT1, который будем рассчитывать далее. Значит для данного транзистора (VT2) будем иметь . Теперь из входных характеристик можно определить минимальное напряжение, которое необходимо подать на вход ключа для того, что бы перевести транзистор в режим насыщения.

 
 

Рисунок 9 - Входные ВАХ транзистора КТ809А

 

Как видно . Из расчетов для транзистора VT2 окончательно получаем,

 

, , .

 

В качестве транзистора VT1 используется транзистор КТ603А со следующими основными характеристиками [ 7, стр.317]:

Статический коэффициент передачи тока в схеме с ОЭ = 80

Обратный ток коллектора(при Тс = -400 ¸ +250С) IKO max = 1 мкА

Постоянный ток коллектора IK max = 1 А

Постоянный ток базы IБ max = 0,2 А

Постоянное напряжение эмиттер-база UБЭ max = 7 В

Постоянное напряжение коллектор -эмиттер UКЭ max =120 В

Постоянная рассеиваемая мощность коллектора РК max = 0,8 Вт

Максимальная температура коллекторного перехода Тп max = 1500С

Значит, общий коэффициент усиления по току базы будет: =30 × 80 = 2400

Для транзистора VT1 получаем, т.к. , то должно выполняться следующее соотношение: = =70 мА, где - ток базы транзистора VT2. Значит по уже известным формулам можно записать:

 

 

Зададимся значением степени насыщения S = 2, тогда получим мА, а затем построим выходные ВАХ для транзистора КТ603А.

 
 

Рисунок 10 - Входные ВАХ транзистора КТ603А


Получим, что . Рассчитаем необходимое сопротивление :

 

 

В режиме запирания транзистора в силу ничтожно малой величины теплового тока коллектора, на вход транзисторного ключа можно не подавать отрицательное запирающее напряжение. Для запирания транзистора будет достаточно и нулевого уровня напряжения.




Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-03 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: