Свойства пределов функции




1° Предел суммы/разности двух функций равен сумме/разности их пределов:

Пример

Задание. Вычислить предел

Решение. Воспользуемся первым свойство, разложим функцию на несколько более простых и отдельно найдем их пределы.

Ответ.

2° Предел произведения двух функций равен произведению их пределов:

Пример

Задание. Вычислить предел

Решение. Воспользуемся вторым свойство, разложим функцию на несколько более простых и отдельно найдем их пределы.

Ответ.

3° Предел частного двух функций равен частному их пределов, при условии, что предел знаменателя не равен нулю:

Пример

Задание. Вычислить предел

Решение. Воспользуемся третьим свойство, сделаем числитель и знаменатель функции отдельными пределами и независимо найдем их.

Ответ.

4° Константу можно выносить за знак предела:

Пример

Задание. Вычислить предел

Решение. Воспользуемся первым и четвертым свойствами, разложим функцию на несколько более простых и отдельно найдем их пределы.

Ответ.

5° Предел степени с натуральным показателем равен степени предела:

Пример

Задание. Вычислить предел

Решение. Воспользуемся пятым свойством, внесем предел под третью степень. Сначала найдем предел более простой функции, а затем возведем его в третью степень.

Ответ.

Первый замечательный предел:

Определение

Предел отношения синуса к его аргументу равен единице в случае, когда аргумент стремится к нулю.

Применение первого замечательного предела на практике

Пример

Задание. Найти предел

Решение. Воспользуемся заменой и первым замечательным пределом.

Ответ.

Пример

Задание. Найти предел

Решение. Разложим тангенс на синус и косинус и воспользуемся свойствами пределов.

Ответ.

Второй замечательный предел:

здесь е - число Эйлера.

Пример

Задание. Найти предел

Решение. Подставим , получим неопределенность и для решения предела воспользуемся вторым замечательным пределом.

Ответ.

Следствия из второго замечательного предела



Понятие непрерывности функции в точке

Основные понятия и определения

Функция называется непрерывной в точке , если:

1. функция определена в точке и ее окрестности;

2. существует конечный предел функции в точке ;

3. это предел равен значению функции в точке , т.е.

Пример

Задание. Вычислить предел

Решение.

Ответ.

Приращение аргумента и функции

Рассмотрим функцию , которая определена в некотором интервале и рассмотрим произвольную точку из этого интервала: .

Определение

Приращением аргумента в точке называется разность

Замечание. Из последнего равенства легко увидеть, что .

Приращением функции в точке называется разность соответствующих значений функции или, используя равенство из выше приведенного замечания, будем иметь:

Теорема

Функция непрерывна в точке тогда и только тогда, когда бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции :

Теорема

Если функции и непрерывны в точке , то функции , , также непрерывны в точке .

Пусть функция задана на множестве , а - множество значений этой функции. Пусть на множестве задана функция . Тогда говорят, что на множестве задана композиция функций (или сложная функция) .

Теорема

Пусть функция непрерывна в точке , а функция непрерывна в точке . Тогда композиция функций непрерывна в точке .

Теорема

Каждая элементарная функция, заданная в окрестности некоторой точки, непрерывна в этой точке.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-04-04 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: