Медицина и окислительно-восстановительные реакции




Фотосинтез.

Фотосинтез – единственный процесс в биосфере, ведущий к увеличению ее свободной энергии за счет внешнего источника. Запасенная в продуктах фотосинтеза энергия – основной источник энергии для человечества. Ежегодно в результате фотосинтеза на Земле образуется 150 млрд. тонн органического вещества и выделяется около 200 млн. тонн свободного кислорода. Круговорот кислорода, углерода и других элементов, вовлекаемых в фотосинтез, поддерживает современный состав атмосферы, необходимый для жизни на Земле. Фотосинтез препятствует увеличению концентрации СО2, предотвращая перегрев Земли вследствие так называемого «парникового эффекта». Поскольку зеленые растения представляют собой непосредственную или опосредованную базу питания всех других гетеротрофных организмов, фотосинтез удовлетворяет потребность в пище всего живого на нашей планете. Он – важнейшая основа сельского и лесного хозяйства. Квадратный метр поверхности листьев в течение одного часа продуцирует около одного грамма сахара; это значит, что все растения, по приблизительной оценке, изымают из атмосферы от 100 до 200 млрд. тонн С в год. Зеленое растение способно не только использовать углекислый газ и создавать сахар, но и превращать азотные соединения, и соединения серы в вещества, слагающие его тело. Через корневую систему растение получает растворенные в почвенной воде ионы нитратов и перерабатывает их в своих клетках в аминокислоты – основные компоненты всех белковых соединений. Компоненты жиров также возникают из соединений, образующихся в процессах обмена веществ и энергии. Из жирных кислот и глицерина возникают жиры и масла, которые служат для растения, главным образом, запасными веществами. Получение семян, жиров и масел играет важную роль в сельскохозяйственной и пищевой промышленности. Уравнение реакции, отображающее процесс фотосинтеза:

СО2 + Н2О=С6Н12О6 + О2

 

Горение

Если мы замерзли, или хотим приготовить еду, то зажигаем огонь. Реакция горения это тоже окислительно – восстановительная реакция.

С + О2 = СО2

А знаете, что можно согреться и без огня, с помощью химических грелок. Например такой: совершенно сухую смесь железной (Fe) или алюминиевой (Al) стружки с солями меди (например, CuCl2) можно хранить довольно долго, а при добавлении воды температура сразу же повышается почти до 100 оС за счет реакции:

Fe + CuCl2 = FeCl2 + Cu.

При этом грелка, в которой хлорид меди CuCl2 превращается в хлорид железа FeCl2, сохраняет тепло около десяти часов.


 

Дыхание

Дыхание характерно для большинства живых организмов, оно просто неотделимо от жизни. Дыхание — это сложный непрерывный процесс поддержания на оптимальном уровне окислительно-восстановительных процессов в организме человека. В процессе дыхания принято различать три звена: легочное дыхание, транспорт газов кровью, тканевое дыхание.

При атмосферном давлении, равном 760 мм рт. ст. процесс дыхания протекает нормально. При понижении атмосферного давления, то есть при подъеме на высокие горы, во время полета в самолете происходит уменьшение содержания кислорода в составе воздуха. В результате недостатка в организме кислорода (гипоксии), у человека появляются признаки горной болезни: дыхание и пульс учащаются, появляются головная боль, мерцание в глазах, тошнота. Если при этом человек не получит кислород в необходимом количестве, он может потерять сознание. Поэтому во время полета в самолете в воздух дополнительно подается кислород.

Жители горных местностей приспособлены к жизни в таких условиях. Содержание эритроцитов в их крови увеличивается, что способствует усвоению кислорода воздуха в большом количестве. Лица, живущие в условиях нормального атмосферного давления, при необходимости подняться в высокие горы должны совершать подъем на высоту не сразу, а постепенно, давая возможность организму приспосабливаться.

Легочное дыхание — это газообмен между организмом и окружающим его атмосферным воздухом. Оно делится на два этапа: газообмен между атмосферным и альвеолярным воздухом, газообмен между альвеолярным воздухом и кровью.

Тканевое дыхание тоже разделено на два этапа. Первый этап — это обмен газов между кровью и тканями, второй связан с потреблением кислорода клетками и выделением ими углекислого газа. Дыхательный цикл состоит из вдоха, выдоха и дыхательной паузы. Обычно вдох короче выдоха. Оптимальное соотношение вдох/выдох = 1/2.

Суммарно процесс дыхания можно выразить следующим уравнением:

С6Н12О6 + О2=СО2 + Н2О + Q

 

Гниение

Благодаря процессам гниения осуществляется круговороты веществ в природе. Гнилостные бактерии, переводя органическое вещество в неорганическое, как бы начинают круговорот жизни. Но в то же время гниение – это процесс разрушения органических азотсодержащих соединений, главным образом белковых веществ, под действием микробных ферментов; составляет один из важных этапов в круговороте веществ в природе. В результате гниения из сложных органических соединений образуются простейшие вещества — Аммиак, углекислота, вода, сероводород, фосфорная, азотная, азотистая и серная кислоты, которые в живой природе служат исходными веществами для нового синтеза (неогенеза) сложных органических соединений. При гниении мяса и рыбы образуются птомаины (кадаверин, нейрин, холин и др.), обладающие токсическими свойствами. В организме человека процесс гниения происходит в основном в толстой кишке, где существуют оптимальные условия для жизнедеятельности гнилостных бактерий. Токсические соединения, образовавшиеся при гнилостном распаде белка в кишечнике, с кровью попадают в Печень, где происходит их обезвреживание. Интенсивность процессов гниения в кишечнике человека невелика, однако при ряде патологических состояний, сопровождающихся выделением в просвет кишечника крови, различных экссудатов или при кишечной непроходимости она возрастает, что может привести к эндогенной интоксикации. Опасно развитие гнилостной инфекции в ранах.


 

Медицина и окислительно-восстановительные реакции

Окислительно-восстановительные реакции активно происходят как на стадиях разложения организмов, так и на стадии заживления ран, излечивания от болезней. Одну из простейших окислительно-восстановительных реакций вы могли не только наблюдать, но и хотя бы раз в жизни провести!

Н2О22О + О2

Перекисью водорода называется хорошо известное в народе вещество, которое широко используют как в медицине, так и для бытовых целей. В частности, перекись водорода рекомендуют как дезинфицирующее средство. Действие перекиси связано с тем, что при контакте с живой тканью она начинает быстро разлагаться. При этом выделяется молекулярный кислород, который способствует окислению органических компонентов разных клеток. При разложении перекиси кислород выделяется настолько энергично, что раствор вспенивается. Получившаяся при контакте с тканью пена помогает в механическом очищении повреждений и ран. Вместе с пеной из ран удаляется мусор, микроорганизмы, омертвевшие частицы тканей, гнойные выделения и так далее. Раствор перекиси водорода способен за счет пенообразования способствовать тромбообразованию и оказывать кровоостанавливающее действие при небольшом кровотечении.

 

Для целей отбеливания и дезинфекции пользуются окислительными свойствами таких наиболее известных средств, как пероксид водорода, хлор и хлорная, или белильная, известь.

Если требуется окислить с поверхности изделия какое-либо легко разрушающееся вещество, применяют пероксид водорода. Он служит для отбеливания шелка, перьев, меха. С его помощью также реставрируют старинные картины. Ввиду безвредности для организма пероксид водорода применяют в пищевой отрасли промышленности для отбеливания шоколада, рубцов и оболочек в производстве сосисок.

Хлор как сильный окислитель используют для стерилизации чистой воды и обеззараживания сточных вод. Хлор разрушает многие краски, на чем основано его применение при белении бумаги и тканей. Хлорная, или белильная, известь – это один из самых распространенных окислителей как в быту, так и в производственных масштабах.


Коррозия

Коррозия металлов – физико-химическое или химическое взаимодействие между металлом (сплавом) и средой, приводящее к ухудшению функциональных свойств металла (сплава), среды или включающей их технической системы.

Коррозия вызывается химической реакцией металла с веществами окружающей среды, протекающей на границе металла и среды. Чаще всего это окисление металла, например, кислородом воздуха или кислотами, содержащимися в растворах, с которыми контактирует металл. Особенно подвержены этому металлы, расположенные в ряду напряжений (ряду активности) левее водорода, в том числе железо.

Многие металлы, в том числе и довольно активные (например, алюминий) при коррозии покрываются плотной, хорошо скрепленной с металлами оксидной пленкой, которая не позволяет окислителям проникнуть в более глубокие слои и потому предохраняет металл от коррозии. При удалении этой пленки металл начинает взаимодействовать с влагой и кислородом воздуха.

Алюминий в обычных условиях устойчив к воздействию воздуха и воды, даже кипящей, однако если на поверхность алюминия нанести ртуть, то образующаяся амальгама разрушает оксидную пленку:

Al + H2O + O2 = Al(OH)3

Коррозии подвергаются и некоторые довольно мало активные металлы. Во влажном воздухе поверхность меди покрывается зеленоватым налетом (патиной) в результате образования смеси основных солей.

К коррозии металлов можно отнести также их растворение в жидких расплавленных металлах (натрий, свинец, висмут), которые используются, в частности, в качестве теплоносителей в ядерных реакторах.

Наиболее распространена коррозия в средах электролитов. В некоторых технологических процессах металлы контактируют с расплавами электролитов. Однако чаще всего коррозия протекает в растворах электролитов. Металл не обязательно должен быть полностью погружен в жидкость. Растворы электролитов могут находиться в виде тонкой пленки на поверхности металла. Они нередко пропитывают окружающую металл среду (почву, бетон и др.).

Во время строительства метромоста и станции «Ленинские горы» в Москве в бетон добавляли большое количество хлорида натрия, чтобы не допустить замерзания еще не схватившегося бетона. Станция была сооружена в кратчайшие сроки (всего за 15 месяцев) и открыта 12 января 1959. Однако присутствие хлорида натрия в бетоне вызвало разрушение стальной арматуры. Коррозии оказались подвергнуты 60% железобетонных конструкций, поэтому станция была закрыта на реконструкцию, продолжавшуюся почти 10 лет. Лишь 14 января 2002 состоялось повторное открытие метромоста и станции, получившей название «Воробьевы горы».

Использование солей (обычно хлорида натрия или кальция) для удаления снега и льда с дорог и тротуаров также приводит к ускоренному разрушению металлов. Сильно страдают транспортные средства и подземные коммуникации. Подсчитано, что только в США применение солей для борьбы со снегопадами и гололедом приводит к потерям на сумму около 2 млрд. долл. в год в связи с коррозией двигателей и 0,5 млрд. долл. на дополнительный ремонт дорог, подземных магистралей и мостов.

В средах электролитов коррозия обусловлена не только действием кислорода, воды или кислот на металлы, но и электрохимическими процессами.

Электрохимическая коррозия приводит к быстрому разрушению более активных металлов, которые в различных механизмах и устройствах контактируют с менее активными металлами, расположенными в электрохимическом ряду напряжений правее. Использование медных или латунных деталей в железных или алюминиевых конструкциях, которые работают в морской воде, существенно усиливает коррозию. Известны случаи разрушения и затопления кораблей, железная обшивка которых была скреплена медными заклепками.

По отдельности алюминий и титан устойчивы к действию морской воды, но если они контактируют в одном изделии, например в боксе для подводной фототехники, алюминий очень быстро разрушается, и бокс протекает.

Одной из причин возникновения электрохимической коррозии являются блуждающие токи, которые появляются вследствие утечки части тока из электрических цепей в почву или водные растворы, где они попадают на металлические конструкции. В местах выхода тока из этих конструкций вновь в почву или воду начинается растворение металла. Такие зоны разрушения металлов под действием блуждающих токов особенно часто наблюдаются в районах наземного электрического транспорта (трамвайные линии, железнодорожный транспорт на электрической тяге). Эти токи могут достигать несколько ампер, что приводит к большим коррозионным разрушениям. Например, прохождение тока силой в 1 А в течение одного года вызовет растворение 9,1 кг железа, 10,7 кг цинка, 33,4 кг свинца.

Полностью предотвратить коррозию можно только в инертной среде, например в атмосфере аргона, однако реально создать такую среду при эксплуатации конструкций и механизмов в подавляющем большинстве случаев невозможно. На практике для снижения коррозионной активности среды из нее стараются удалить наиболее реакционноспособные компоненты, например, снижают кислотность водных растворов и почв, с которыми могут контактировать металлы. Одним из методов борьбы с коррозией железа и его сплавов, меди, латуни, цинка, свинца является удаление из водных растворов кислорода и диоксида углерода. В энергетике и некоторых отраслях техники воду освобождают также от хлоридов, которые стимулируют локальную коррозию. Для снижения кислотности почвы проводят известкование.

Агрессивность атмосферы сильно зависит от влажности. Для любого металла есть некоторая критическая относительная влажность, ниже которой он не подвергается атмосферной коррозии.

Один из способов защиты от коррозии основывается на разработке новых материалов, обладающих более высокой коррозионной стойкостью. Часто применяют поверхностное легирование недорогих железных сплавов цинком, алюминием, хромом.

Для замедления коррозии на поверхность металла наносят лаки и краски, минеральные масла и смазку. Подземные конструкции покрывают толстым слоем битума или полиэтилена.

Одним из наиболее эффективных методов борьбы с коррозией является электрохимическая защита. Для защиты буровых платформ, сварных металлических оснований, подземных трубопроводов их подключают в качестве катода к внешнему источнику тока. В качестве анода используются вспомогательные инертные электроды.

Защита одного металла другим, более активным металлом, расположенным в ряду напряжений левее, эффективна и без наложения разности потенциалов. Более активный металл (например, цинк на поверхности железа) защищает от разрушения менее активный металл.

О вредном действии коррозии знают все, но нельзя и недооценивать ее значение. С глубокой древности известен способ превращения железа в сталь, через ржавление. Суммарно процесс ржавления можно выразить уравнением:

Fe + Н2О + О2=Fe(OH)3

Черкесы на Кавказе закапывали полосовое железо в землю, а, откопав его через 10-15 лет, выковывали из него свои сабли, которые могли перерубить даже ружейный ствол, щит врага. После выкапывания ржавое железо вместе с органическими веществами нагревали в горнах, ковали, а затем охлаждали водой – закаливали.


 

Электролиз

Золочение предметов известно с давних пор, так как позолоченные изделия очень красивы. Прежде, когда электролиз и гальванотехника не были изобретены, изделия из металлов золотили так: на них наносили тестообразную амальгаму золота (сплав его с ртутью); затем накаливали докрасна; при этом ртуть испарялась, а золото оставалось. Но пары ртути очень ядовиты, так, например, при золочении куполов Исаакиевского собора в Петербурге от отравления ртутью погибло 60 рабочих.

 

Пиротехника

Окислительно-восстановительные реакции находят применение и в военных целях. Их применяются для изготовления оружия, снарядов, сигнальных ракет и зажигательных смесей, изготовление огнеупорных материалов, техники и т.д. Но окислительно-восстановительные реакции с точки зрения пиротехники выполняют не только разрушающую миссию, но и несут светлое и красивое в нашу жизнь. В данном случае имеются в виду фейерверки.

(NH4)2Cr2O7=Сr2O3 + N2 + H2O

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-11 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: