Липиды (жиры и масла)
Цель изучения модульной единицы 4 – разобраться в основных функциях липидов и ПНЖК в организме, в процессах превращения жиров и масел при их промышленной переработке, процессах порчи жиров.
Аннотация
Рассмотрена физиологическая роль липидов в организме, указаны нормы потребления отдельных групп липидов, ПНЖК. Разобраны основные опасности недостатка и избытка жиров в пище. Рассмотрены процессы переработки липидов в промышленности: гидролиз жиров и фосфолипидов, гидрирование и переэтерификация ацилглицеринов. Разобраны основные изменения жиров в процессе переработки и хранения – гидролитические и окислительные процессы.
Ключевые слова:
Ацилглицерины, насыщенные и ненасыщенные жирные кислоты, ПНЖК, семейства ω-3 и ω-6 жирных кислот, фосфолипиды, стерины, холестерин, лецитин, кефалин, моно-, ди-, триацилглицерины, глицерофосфолипиды, гидролиз, гидрирование, этерификация, прогоркание, кетонное прогоркание, химическое, ферментативное прогоркание, осаливание жиров, антиоксиданты.
Рассматриваемые вопросы:
- Физиологическая роль липидов в организме человека
- Функции липидов
- Пищевая ценность липидов
- Процессы переработки жиров и масел
- Гидролиз триацилглицеринов
- Свойства и превращения глицерофосфолипидов
- Гидрирование ацилглицеринов
- Реакции переэтерификации ацилглицеринов
- Биохимические и физико-химические изменения жиров в процессе переработки и хранения
- Гидролитическое расщепление жиров
- Окислительные изменения
- Окислительная порча жиров
Липиды (жиры и масла)
Физиологичкская роль липидов в организме человека.
1. Функции липидов. Функции липидов в организме разнообразны (рис. 5.1).
|
Это основной энергетический материал. При сгорании 1 г триацилглицеролов, главного компонента липидов, выделяется 38,9 кДж (9,0 ккал), что в 2 раза больше, чем при сгорании белков или углеводов. Липиды в организме играют роль резервного материала, используемого при ухудшении питания или заболеваниях. Они являются также структурным элементом тканей, в составе клеточных оболочек и внутриклеточных образований.
Липиды - источник синтеза стероидных гормонов, которые во многом обеспечивают приспособление организма к различным стрессовым ситуациям. В нервной ткани содержится до 25% липидов, в клеточных мембранах - до 40%.
Липопротеины – соединения липидов с белками – выполняют транспортную функцию: они являются переносчиками жирорастворимых витаминов А, D, E и К в организме. Кроме того, липопротеины представляют собой источник для синтеза простагландидов, тромбоксанов и группы других соединений, защищающих организм. Липиды участвуют также в процессах терморегуляции, защищая организм от холода; способствуют закреплению в определенном положении таких внутренних органов, как почки, кишечник, и предохраняют их от смещения при сотрясении.
Рис. 5.1. Основные функции липидов в человеческом организме
- Пищевая ценность отдельных групп липидов. Нормы их потребления
Наиболее важная и распространенная группа простых нейтральных липидов – ацилглицеринов. Ацилглицерины – (или глицериды) – это сложные эфиры глицерина и высших карбоновых кислот. Они составляют основную массу липидов (иногда до 95%) и, по существу, именно их называют жирами или маслами. В состав жиров диацилглирерины и моноацилглицерины.
|
Триацилглицерины (ТАГ), молекулы которых содержат одинаковые остатки жирных кислот, называются простыми, в противном случае - смешанными. Природные жиры и масла содержат, главным образом, смешанные триацилглицерины.
Пищевые жиры относятся к классу липидов, представляющих собой группу соединений животного, растительного или микробного происхождения. Они практически нерастворимы в воде и хорошо растворимы в неполярных органических растворителях. Жиры, добываемые из растительного сырья, называют растительными жирными маслами, а жиры наземных животными жирами. Особую группу составляют жиры морских млекопитающих и рыб.
Чистые ацилглицерины – бесцветные вещества без вкуса и запаха. Окраска, запах и вкус природных жиров определяются наличием в них специфических примесей, характерных для каждого вида жира. Температуры плавления и застывания ацилглицеринов не совпадают, что обусловлено наличием нескольких кристаллических модификаций.
Важнейшая составная часть жиров – жирные кислоты, насыщенные и ненасыщенные (табл. 5.1.).
Таблица 5.1. Основные карбоновые кислоты, входящие в состав природных масел и жиров
Кислота | Формула | Условное обозначение (символ) |
Насыщенные кислоты | ||
Лауриновая Миристиновая Пальмитиновая Стеариновая Арахиновая | СН3-(СН2)10-СООН СН3-(СН2)12-СООН СН3-(СН2)14-СООН СН3-(СН2)16-СООН СН3-(СН2)18-СООН | С12 С14 С16 С18 С20 |
Ненасыщенные кислоты | ||
Олеиновая Эруковая Линолевая Линоленовая Арахидоновая | СН3-(СН2)7-СН=СН-(СН2)7-СООН СН3-(СН2)7-СН=СН-(СН2)11-СООН СН3-(СН2)4-СН=СН-СН2-СН=СН-(СН2)7-СООН СН3-(СН2-СН=СН)3-(СН2)7-СООН СН3-(СН2)3-(СН2-СН=СН)4-(СН2)3-СООН | С118-9-цис С122-9-цис С218-6-цис, 9-цис С318-3цис, 6-цис, 9-цис С420-6-цис, 9-цис, 12-цис, 15-цис |
|
*В символ входят число атомов углерода и количество двойных связей между углеродными атомами в молекуле кислоты, номер первого ненасыщенного атома углерода от метильного атома углерода конфигурация.
Жирные кислоты в основном и определяют свойства жира. Чем больше в жирах полиненасыщенных жирных кислот, тем они более биологически активны. Самые распространенные жирные кислоты – пальмитиновая, олеиновая, линолевая.
Насыщенные жирные кислоты содержатся в коровьем масле (масляная, капрновая), животном жире (пальмитиновая, стеариновая, миристиновая), рыбьем жире и земляных орехах (арахиновая), рапсовом масле (бегеновая).
Насыщенные жирные кислотыиспользуются в основном как энергетический материал, содержатся в наибольших количествах в животных жирах, что определяет высокую температуру плавления этих жиров и их твердое состояние. Они содержатся в мясе животных и субпродуктах.
Высокое содержание животных жиров в рационе нежелательно, поскольку при избытке насыщенных жирных кислот нарушается обмен липидов, повышается уровень холестерина в крови, увеличивается риск развития атеросклероза, ожирения, желчно-каменной болезни.
Ненасыщенные жирные кислоты подразделяются на мононенасыщенные (содержат одну ненасыщенную водородом связь) и полиненасыщенные (несколко связей). Простые ненасыщенные жирные кислоты содержатся в рыбьем жире (эруковая, гадолеиновая), масле, жире, орехах (олеиновая), а также в молочном жире (пальмитолеиновая). Полиненасыщенные жирные кислоты содержатся в масле семян, рыбьем жире (линолевая, линоленовая, арахидоновая, клупонодоновая). Полиненасыщенные жирные кислоты (ПНЖК): линолевая, линоленовая – относятся к незаменимым формам питания, так как в организме они не синтезируются и потому должны поступать с пищей. Эти кислоты по своим биологическим свойствам относятся к жизненно необходимым веществам и называются «Витамин F».
Линолевая кислота превращается в организме в арахидоновую, а линоленовая – эйкозапентаеновую. Недостаточное поступление с пищей линолевой кислоты вызывает в организме нарушение биосинтеза арахидоновой кислоты.
Арахидоновая кислота предшествует образованию веществ, участвующих в регуляции многих процессов жизнедеятельности тромбоцитов и других элементов, но особенно простагландинов, которым придают большое значение как веществам высочайшей биологической активности. Простагландины обладают гормоноподобным действием, в связи с чем получили название «гормонов тканей», так они синтезируются непосредственно из фосфолипидов мембран. Синтез простагландидов зависит от обеспеченности организма этими кислотами.
ПНЖК, образующиеся из линолевой кислоты (эйкозопентановая и докозагексановая), также постоянно в мембранных липидах, но в значительно меньших количествах, чем арахидоновая кислота. ПНЖК участвуют в образовании липидов, вместе с которыми входят в состав клеточных мембран. Воздействуют на структуру кожи и волос, снижают артериальное давление, способствуют профилактике артрита, понижают уровень холестерина и триглицеридов, уменьшают риск тромбообразования; оказывают положительное воздействие при заболеваниях сердечно-сосудистой системы, кандидозе, экземе, псориазе; требуются для нормального развития и функционирования мозга.
Установленная связь ненасыщенных жирных кислот с обменом холестерина. Они способствуют быстрому преобразованию холестерина в фолиевые кислоты и выведению их из организма, оказывают нормализующее действие на стенки кровеносных сосудов, повышают их эластичность и снижают проницаемость. Выявлена зависимость связи ненасыщенных жирных кислот и обмена витаминов группы В. При их дефиците снижается интенсивность роста и устойчивость к неблагоприятным внешним и внутренним факторам, угнетается репродуктивная функция, недостаточность ненасыщенных жирных кислот оказывает влияние на сократительную способность миокарда, вызывает поражение кожи, способствуют развитию атеросклероза. Прием ПНЖК стимулирует систему иммунологической защиты организма, благотворно влияет на внешний вид кожных покровов, способствует более быстрому лечению воспалительных заболеваний желудка, язвенной болезни желудка и двенадцати перстной кишки, способствует оздоровлению и улучшению функции капилляров, эффективен при лечении сахарного диабета и бронхиальной астмы. Особенно много ПНЖК в растительных маслах.
По современным представлениям, сбалансированным считают следующий жирнокислотный состав триацилглицеролов: полиненасыщенные жирные кислоты – 10%, мононенасыщенные – 60%, насыщенные – 30% суточная потребность человека в линолевой кислоте – 4-10 г, что соответствует 20-30 г растительных масел.
По биохимической классификации линолевая кислота и продукты ее превращения объединяются в семейство ω-6 – по положению первой двойной связи в молекуле жирной кислоты, считая от метильного (первого в цепи) атома углерода. Продукты превращения другой незаменимой жирной кислоты – линоленовой – отличаются от представителей жирных кислот семейства ω-6 тем, что у них первая двойная связь от метильного атома углерода занимает положение 3. Поэтому линоленовая кислота и ее продукты превращения образуют семейство ω-3. Жирные кислоты одного семейства в живых организмах не переходят в другое.
На основании современных представлений о физиологической роли ПНЖК разных семейств возникло самостоятельное направление в современной диетологии. Практическим следствием нового направления явилось признание необходимости нормирования и обеспечения постоянного поступления с пищей ПНЖК семейства ω-3. Рассматривается необходимость обеспечения от 0,2 до 0,8% энергоценности рациона за счет линоленовой кислоты, в то время как линолевая кислота (семейство ω-6) должна составлять 4-8% энергоценности. Следовательно, потребность в линоленовой кислоте оценивается в 1/8-1/10 потребности в линолевой. Установлено, что из всех видов растительных масел только соевое имеет соотношение этих двух кислот, близкое к рекомендуемому.
Липиды морских рыб и беспозвоночных содержат главным образом две кислоты семейства ω-3: эйкозапентаеновую и докозагексаеновую. Такой тип липидов получил название «морского». Применение ПНЖК семейства ω-3 в клинике является эффективным методом профилактики атеросклероза и ишемической болезни сердца (ИБС). У больных, перенесших инфаркт миокарда, увеличение содержания в пище линоленовой жирной кислоты в виде изготовленного из рыбьего жира маргарина в течение 5 лет снизило смертность от ИБС на 50%.
Британский фонд питания определил идеальное соотношение в рационе питания человека между ПНЖК семейства ω-6 и ПНЖК ω-3 в количестве 6:1, тогда как, по другим данным, это соотношение должно составлять 10:1. На этом соотношении основана известная рекомендация существенного увеличения потребления жирной рыбы.
Много ненасыщенных жирных кислот содержится в рыбьем жире, в свежей рыбе, в грецких орехах, семенах тыквы, оливках, в льняном, рапсовом масле, примуле вечерней, миндале.
Содержание арахидоновой кислоты в пищевых продуктах незначительно и составляет, %: в мозгах – 0,5; яйцах – 0,1; свиной печени – 0,3; сердце – 0,2. Организмы морских животных, особенно рыб, таких как атерина каспийская, треска, сайра, беломорская и атлантическая сельдь, путассу, антарктический планктонный рачок, голомянка большая, разные виды акул, характеризуются высоким содержанием полиненасыщенных жирных кислот липидной фракции. Наиболее замечательной чертой морских организмов является наличие в их липидных фракциях весьма высоких количеств ПНЖК с 5 и 6 двойными связями. Содержание докозагексаеновой кислоты в жире акулы сельдевой достигает 30%. В общем, в липидах морских организмов содержание высших полиненасыщенных жирных кислот с 4 связями достигает 10%, с 5-30% и с 6-40%.
Важнейшими представителями сложных липидов являются фосфолипиды. Молекулы фосфолипидов построены из остатков спиртов (глицерина, сфиногозина), жирных кислот, фосфорной кислоты (Н3РО4), а также содержат азотистое основание (чаще всего холин (НО-СН2-СН2-(СН3)3N)+ОН или этаноламин НО-СН2-СН2-NH2), остатки аминокислот и некоторых других соединений.
Фосфолипиды – основной компонент биомембран клеточных структур, они играют существенную роль в проницаемости клеточных оболочек и внутриклеточном обмене. Наиболее важны из фосфолипидов - фосфатидилхолин, или лецитин, проявляет липотропное действие, препятствуя ожирению печени и лучшему усвоению жиров.
Недостаток фосфатидов в рационе приводит к накоплению жира в печени, к ее ожирению, а за тем и к циррозу. Суточная потребность в фосфатидах здорового взрослого человека – 5-10 г.
Лецитин встречается во всех тканях растительного и животного происхождения в семенах масличных растений количество может достигать 1-1,5%, в некоторых тканях животного организма – 6-10%. Лецитином богаты яичные желтки, икра, мозги, печень. Источником лецитина являются, также нерафинированные растительные масла, в том числе и облепиховые, а также молочные жиры. В жирах сливок и сметаны лецитина больше, чем в сливочном масле. В говяжьем, свином, бараньем жирах лецитина почти нет. источником фосфатидов также могут служить бобовые (соя, горох), семена подсолнечника, орехи, особенно кедровые.
При оценке пищевых жиров наиболее высоко ценятся жиры, содержащие лецитин. Для промышленных целей лецитин и кефалин (фосфатидилэтаноламины) получают из соевых бобов. Они используются при производстве шоколада, маргарина и как антиоксиданты в жирах.
Среди сопутствующих жирам неомыляемых веществ важное место занимают стеарины.
Стеарины – алициклические вещества, входящие в группу стероидов, овычно они представляют собой кристаллические одноатомные спирты (стеролы) или их эфиры (стериды). Различают зоостерины, выделяемые из животных объектов, фитостерины (из ратсений), микостерины, выделяемые из грибов. Стерины имеют в своей основе структуру пергидроциклопентанофенантрена
Наиболее известным стерином является холестерин. Он входит в став животных жиров. У млекопитающих он служит предшественником ряда важнейших активных веществ: гормонов, некоторых витаминов, желчных кислот. Холестерин является предшественником гормонов, относящихся к группе стероидных гормонов, в том числе женских половых гормонов прогестерона, эстрадиола и мужского полового гормона тестостерона.
Содержание холестерина в продуктах питания приведено в табл. 5.2.
Таблица 5.2. Содержание холестерина в продуктах
Продукт | Содержание, мг/100 г | Продукт | Содержание, мг/100 г |
Мозги | Масло сливочное | ||
Яичный желток | Мясо животных и домашней птицы | ||
Цельное яйцо | |||
Почки | Рыба | ||
Икра зернистая | более 300 | Сыр | |
Печень | Творог жирный и сливки | ||
При варке мяса и рыбы теряется до 20% холестерина. Обычный суточный рацион – 500 мг холестерина. Известно, что его высокий уровень в крови является фактором риска возникновения атеросклероза, поэтому при соответствующих заболеваниях рекомендуется ограничить потребление пищевых продуктов с его высоким содержанием. В странах, где потребляют наименьшее количество животных жиров (большинство стран Африки, Индия, Япония), содержание холестерина в крови гораздо ниже, чем в США, Англии, Финляндии. Известно, что уменьшение содержания холестерина в крови на 1% приводит к уменьшению риска развития сердечно-сосудистых заболеваний на 2%. Холестерин необходим для синтеза витамина D, желчных кислот, гормонов половых желез и коры надпочечников, а также регуляции проницаемости мембран клеток.
Из фитостеринов, содержащихся в жире растительных продуктов питания, наиболее активным считается β-ситостерин. Он является антогонистом холестерина, задерживает его всасывание в кишечник. Он в больших количествах содержится в растительных маслах. Особенно его много в соевом масле. Β-ситостерол встречается и в мякоти плодов грейпфрута – как в несвязанной форме, так и в виде глюкозида, в семенах грейпфрута он присутствует лишь в свободной форме. Он служит препятствием для абсорбции холестерина, тем самым предотвращая повышение уровня холестерина в сыворотке. Потребление в пищу продуктов, содержащих фитостерин, снижает уровень холестерина в крови.
Рекомендуемое содержание жиров в рационе человека – 90-100 г в сутки, при этом 1/3 их должны составлять растительные масла, 2/3 – животные. По данным ВОЗ, нижний предел безопасного потребления жиров составляет для взрослых мужчин и женщин 25-30 г/сутки.
Недостаток или избыток жиров практически одинаково опасны для организма человека (рис. 5.2.). При низком содержании жира в рационе, особенно у людей с нарушенным обменом веществ, сначала появляется сухость и гнойничковые заболевания кожи, затем наступает выпадение волос и нарушение пищеварения, понижается сопротивляемость организма к инфекциям, нарушается обмен витаминов.
При избыточном потреблении жиров происходит их накопление в крови, печени и других тканях и органах. Кровь становится вязкой, повышается ее свертываемость, что предрасполагает к закупорке кровеносных сосудов, возникает атеросклероз. Избыток жира приводит также к ожирению – одному из распространенных заболеваний во многих развитых странах, где потребление жиров на душу населения увеличивается или высока доля жира в традиционных рационах питания.
Рядом ученых высказывается мнение, что существует прямая связь между раком толстого кишечника и потреблением жирной пищи. Высокое содержание жира в пище приводит к увеличению концентрации желчных кислот, поступающих с желчью в кишечник. Желчные кислоты и некоторые другие составные части желчи, а также продукты распада животных белков оказывают на кишечную стенку либо канцерогенное влияние непосредственно, либо под действием кишечной микрофлоры превращаются в продукты, обладающие канцерогенным эффектом. Аналогично этому при избытке ПНЖК, поступающих за счет растительных масел или рыбьих жиров, образуется много окислительных продуктов их обмена – свободных радикалов, - отравляющих печень и почки, снижающих их иммунитет и также оказывающих канцерогенное действие.
- Процессы переработки жиров и масел
2.1. Гидролиз триацилглицеринов
Под влиянием щелочей, кислот, фермента липазы триацилглицерины гидролизуются с образованием ди-, затем моноацилглицеринов и, в конечном счете, жирных кислот и глицерина.
В присутствии кислотных катализаторов (сульфокислоты, H3PO4) процесс ведут при 100◦Cв избытке воды. В присутствии катализаторов расщепление проводят при температуре 220-225◦С под давлением 2-2.5 МПа («безреактивное» расщепление). Гидролиз концентрированными водными растворами гидроксида натрия (омыление) является основой процесса получения («варки») мыла. На скорость гидролиза ацилглицерина влияют строение и положение ацилов, температура, катализаторы. С ростом длины углеродной цепи, увеличением ненасыщенности (при той же длине углеродной цепи) ацилов скорость гидролиза снижается. Гидролиз ацилглицилов под действием липазы протекает ступенчато. При этом наблюдается определенная селективность: на первой стадии образуются 1,2-диацилглицерины, на второй – 2-моноацилглицерины. Скорость гидролиза моноацилглицеринов выше, чем триацилглицеринов; диацилглицерины занимают промежуточное положение.
Гидролиз триацилглиреринов широко применяется в технике для получения жирных кислот, глицерина, моно- и диацилглицеринов.
2.2. Свойства и преврашения глицерофосфолипидов
В молекуле фосфолипидов имеются заместители двух типов: гидрофильные и гидрофобные. В качестве гидрофильных (полярных) группировок выступают остатки фосфорной кислоты и азотистого основания («голова»), а гидрофобных (неполярных) – углеводородные радикалы («хвосты»).
Подавляющее большинство фосфолипидов имеет в своем составе остатки одной насыщенной (обычно в положении 1) и одной ненасыщенной (в положении 2) кислоты.
Несмотря на рассмотренное выше структурное многообразие, молекулы большинства фосфолипидов построены по общему принципу. В их состав входят, с одной стороны, гидрофобные, отличающиеся низким сродством к воде, липофильные углеводородные остатки, с другой – гидрофильные группы. Они получили название «полярных головок».
Построенные таким образом амфифильные (обладающие двойным сродством) молекулы липидов легко ориентируются. Гидрофобные хвосты стараются попасть в масляную фазу, гидрофильные группы создают границу раздела между водой и гидрофобной фазой.
В маслах фосфолипиды в зависимости от концентрации могут присутствовать в виде групп ассоциированных молекул – мицелл. При низкой концентрации получаются сферические мицеллы, в которых полярные части молекул образуют внешний слой, а гидрофобные – внутренний; при повышенной концентрации мицеллы группируются в длинные цилиндры. При дальнейшем росте концентрации образуется сферический тип жидкокристаллической структуры – ламеллярная (слоистая), состоящая из бимолекулярных слоев липидов, разделенных слоями воды. Последующее объединение мицелл приводит к выпадению их в виде осадка (фосфатидная эмульсия, «ФУЗ»).
Глицерофосфолипиды – бесцветные вещества, без запаха, хорошо растворимы в жидких углеродах и их галогенпроизводных, отдельные группы различаются растворимостью в спиртах, ацетоне. Они существуют в нескольких полимерных формах и плавятся в две стадии. Обладают оптической активностью. Выделенные из природных объектов фосфолипиды – аморфные вещества, перекристаллизованные из органических растворителей – имеют кристаллическую структуру.
Химические превращения глицерофосфолипидов обусловлены характером и строением структурных компонентов и видами химических связей. Для них характерны реакции гидролиза кислотами и щелочами. Существует несколько видов гидролаз (A1,A2 ,B1,B2,C,D), различающихся характером действия на субстрат. Они обнаружены в природных объектах.
Полярные группы молекул фосфолипидов взаимодействуют с полярными группами молекул белков,углеводов, диполями воды.
Некоторая часть фосфолипидов не выделяется из масел или выделяется только с помощью специальных приемов гидратации масел (негидратируемые фосфолипиды). По современным представлениям – это комплексные соединения фосфолипидов с ионами металлов (Ca2+,Mg2+,Cu2+,Fe2+иFe3+; последние являются катализаторами процессов окисления), а также соединения со стеролами и алифатическими спиртами.
В результате энзимической и химической модификации в промышленности получают различные виды производных фосфолипидов (лецитинов): гидролизованные лецитины, гидроксилированные, ацилированные с различными гидрофильно-липофильными характеристиками (ГЛБ от 2 до 12). Они нашли широкое применение в пищевой промышленности.
2.3. Гидрирование ацилглицеринов
Гидрирование масел и жиров молекулярным водородом в промышленности проводят при температурах 180-240◦С в присутствии никелированных или медно-никелевых катализаторов, при давлении, как правило, близком к атмосферному. Задача гидрогенизации масел и жиров – целенаправленное изменение жирно кислотного состава исходного жира в результате частичного или полного присоединения водорода к остаткам ненасыщенных жирных кислот, входящим в состав ацилглицеринов подсолнечного, хлопкового, соевого, рапсового и других жидких растительных масел.
Основная химическая реакция, протекающая при гидрогенизации, - присоединение водорода к двойным связям остатков непредельных жирных кислот:
Подбирая соответствующие условия реакции, удастся осуществить этот процесс селективно (избирательно), гидрируя сначала, в основном, ацилы линоленовой кислоты, затем линолевой до олеиновой, а уже потом остатки олеиновой (если это необходимо) до стеариновой кислоты, и получить продукт с заранее заданными свойствами, называемый саломасом:
Процесс гидрирования отдельных ненасыщенных триацилглицеринов может быть представлен следующим уравнении:
Селективность (избирательность) гидрирования объясняется большей скоростью гидрирования ацилов более ненасыщенных кислот. Гидрирование масел и жиров является гетерогенным процессом, протекающим на границе раздела фаз: смесь ацилглицеринов – катализатор. Параллельно с присоединением водорода к двойным связям (гидрирование) на поверхности катализатора происходит смещение С=С-связи (структурная изомеризация, 1) и геометрическая изомеризация (цис-транс-изомеризация, 2).
В отличие от гидрирования, реакции изомеризации (1, 2), идущие на поверхности катализатора, не требуют расхода водорода. Предпочтительное протекание реакций (селективность) по одному из возможных направлений определяется свойствами катализатора и условиями проведения процесса. В процессе гидрогенизации может проходить и частичная переэтерификация. Образующиеся транс-изомеры жирных кислот не метаболизируются в организме человека и по сведениям ряда авторов обладают канцерогенными свойствами.
2.4. Реакции переэтерификации ацилглицеринов
Большое практическое значение имеет группа реакций, при которых идет обмен ацильных групп (ацильная миграция), приводящий к образованию новых ацилглицеринов. Триацилглицерины при температуре 80-90◦Св присутствии катализаторов (метилат и этилат натрия, натрий и калий, алюмосиликаты) способность обмениваться ацилами (переэтерификация). При этом ацильная миграция как внутри молекулы ацилглицерина (внутримолекулярная переэтерификация), так и между различными молекулами ацилглицеринов (межмолекулярная переэтерификация).
При переэтерификации с участием химических катализаторов состав жирных кислот жира не меняется, происходит их статистическое распределение в смеси триглицеридов, что приводит к изменению физико-химических свойств жировых смесей в результате изменения молекулярного состава. Увеличение числа ацил-глицериновых компонентов в жире приводит к снижению температуры плавления и твердости жира, повышению его пластичности.
Скорость переэтерификации зависит от ацилглицеринового и жирнокислотного состава жира, количества и активности катализатора, температуры.
Переэтерификация высокоплавких животных и растительных жиров с жидкими растительными маслами позволяет получить пищевые пластичные жиры с высоким содержанием линолевой кислоты при отсутствии транс-изомеров жирных кислот. Готовые переэтерифицированные жиры, предназначенные в качестве компонентов маргариновой продукции, имеют следующие показатели: температура плавления 25-35◦С; твердость (при 15◦С) 30-130 г/м; массовая доля твердых триглицеридов (при 20◦С) 6-20%. Переэтерифицированные жиры специального назначения применяются в хлебопочении, при производстве аналогов молочного жира, кондитерского жира, комбинированных жиров и т.д.
3. Биохимические и физико-химические изменения жиров в процессе переработки и хранения
В процессе переработки и хранения жиросодержащих продуктов или выделенных из них жиров происходят многообразные превращения их под влиянием биологических и химических факторов.
В результате этих превращений изменяется химический состав, ухудшаются органолептические показатели и пищевая ценность жиров, что может привести к их порче.
Независимо от технологических режимов переработки и хранения, а также вида жира в них протекают однотипные изменеия, сводящиеся к гидролизу и окислению. Эти процессы протекают по схеме, представленной на рис. 5.4. Преобладание в жире гидролитического или окислительного процесса зависит от температуры, наличия кислорода, света, воды, продолжительности нагревания, присутствия веществ, ускоряющих или замедляющих эти процессы. Поэтому основные способы тепловой обработки жиросодержащих продуктов и жиров (варка, жарка) различаются по степени и характеру воздействия на жир. При варке преобладают гидролитические процессы, при жарке – окислительные. В любом случае качество жира оценивают по кислотному, перекисному, ацетильному числам, содержанию альдегидов, кетонов и других соединений.
Гидролитическое расщепление жиров жиров протекает с обязательным участием воды и может быть как ферментативным, так и не ферментативным. В тканевых жирах, жире-сырце (внутренний жир), жире мяса, плодов и овощей, жире сырокопченостей и т.п. под влиянием тканевых липаз наблюдается гидролиз ацилглицеринов, сопровождающийся накоплением жирных кислот и, как следствие, повышением кислотного числа. Скорость и глубина гидролиза жира зависят от температуры: процесс ферментативного катализа значительно ускоряется при температуре выше 20◦С; снижение температуры замедляет процесс гидролиза, но даже при минус 40◦С ферментативня активность липаз проявляется, но в слабой мере.
При неблагоприятных условиях (влага, повышенная температура) может произойти гидролитическая порча жиров, вызванная не только действием ферментов, но и других факторов: кислот, щелочей, окислов металлов и других неорганических катализаторов, а также ферментов микроорганизмов.
Образование в жире при гидролитическом распаде небольшого количества высокомолекулярных жирных кислот не вызывает изменения вкуса и запаха продукта. Но если в составе триглицеридов (молочный жир) имеются низкомолекулярные кислоты, то при гидролизе могут появиться капроновая и масляная кислоты, характеризующиеся неприятным запахом и специфическим вкусом, резко ухудшающими органолептические свойства продукта.
В топленых жирах автолитического (ферментативного) расщепления жиров не наблюдается, так как в процессе вытопки при температуре около 60◦С липаза, содержащаяся в жировой ткани, инактивируется. гидролитическая порча топленого жира происходит при наличии влаги, в результате обсеменения микрофлорой, неполной денатурации белков при вытопке жира из жировой ткани или под воздействием катализаторов.
Окислительные изменения. В процессе переработки и хранения жиров возможно ухудшение их качества в результате окислительных процессов, глубина и скорость которых зависят от природных свойств жира, температуры, наличие кислорода и света. Эти факторы могут вызвать окислительную порчу жиров.
Различают автоокисление и термическое окисление жиров. Автоокисление жиров протекает при низких температурах в присутствии газообразного кислорода. Термическое окисление происходит при температуре 140-200◦С. Между термическим и автоокислением есть много общего, однако состав образующихся продуктов несколько различается.
Продукты, образующиеся при автоокислении и термоокислении, подразделяются на три группы:
1. Продукты окислительной деструкции жирных кислот, в результате которой образуются вещества с укороченной цепью.
2. Продукты изомеризации, а также окислительные ацилглицерины, которые содержат то же количество углеродных атомов, что и исходные ацилглицерины, но отличаются от последних наличием в углеводородных частях молекул жирных кислот новых функциональных групп, содержащих кислород.
3. Продукты окисления, содержащие полимеризованные или конденсированные жирные кислоты, в которых могут находиться и новые функциональные группы, имеющие в своем составе кислород.
Кроме того, продукты окисления делятся на термостойкие и нетермостойкие.
Первичными продуктами окисления являются перекиси, активирующие окисление других молекул. Благодаря этому реакция окисления носит цепной характер. Механизм окисления жиров в настоящее время изучен. теория цепных реакций разработана академиком Н.Н. Семеновым и его учениками при изучении кинетики химических процессов.
Окислению подвергаются в первую очередь ненасыщенные жирные кислоты, но могут окисляться также и насыщенные кислоты с образованием гидроперекисей. При глубоком окислении жиров возможно образования гидроперекисей и эпоксидных соединений
Содержание перекисных соединений в жире оценивают по величине перекисного числа. Это довольно чувствительный показатель, и по его значению судят о начале и глубине окислении жира. В свежем жире перекисей нет. На начальных стадиях окисления в течение некоторого времени химические и органолептические показатели жира почти не изменяются. Этот период, имеющий различную продолжительность, называется индукционным. После индукционного периода жир начинает портиться. Обнаруживается это по увеличению перекисного числа и изменению органолептических свойств жира.
Наличие индукционного периода объясняется тем, что в начале процесса молекул с повышенной кинетической энергией (возбужденных или свободных радикалов) очень мало. Обусловлено это также содержанием в жире естественных антиокислителей: каротиноидов, токоферолов, лецитинов, которые более активно взаимодействуют со свободными радикалами и с кислородом воздуха и тем самым препятствуют окислению жиров. Продолжительность индукционного периода зависит от концентрации антиокислителей, природы жира и условий переработки и хранения.
Животные жиры, в составе которых меньше ненасыщенных кислот, более устойчивы, чем растительные.
Процесс автоокисления жиров значительно ускоряется в присутствии влаги, света и катализаторов. Такими катализаторами могут быть легкоокисляющиеся металлы (окислы или соли железа, меди, свинца, олова), а также органические соединения, содержащие железо, белки, гемоглобин, цитохромы и другие.
Каталитическое действие металлов основано на способности их легко присоединять или отдавать электроны, что приводит к образованию свободных радикалов из гидропе