Исходные данные для выполнения курсовой работы
Вариант №5
См | Се | J | Кос | Кт | Lэ | Кi | Tω | Т1 | Rэ | МКS | МКС |
Нм/А | Вс/рад | Кг*м2 | Вс/рад | Ом | Гн | сек | сек | Ом | Нм | Нм | |
0, 205 | 0, 205 | 8,00E-05 | 2,30E-02 | 0,27 | 6,50E-04 | 1,3 | 1,52E-03 | 2,80E-03 | 0,52 | 5,40E-03 | 2, 20E-03 |
Принцип действия вентильного электропривода
При протекании тока в рамке (см. рис.2) возникает вращающий момент:
Рис.1 Формирование вращающего момента.
(1)
где: В - магнитная индукция, Тл; S-площадь рамки, см2; W-число витков рамки; i-ток, А; a-угол между намагничивающей силой и рамкой с током.
Этот момент повернет ротор (постоянный магнит) на 90°. В вентильном электродвигателе в статоре расположено 3 обмотки и в зависимости от положения ротора относительно статора подключаются 2 обмотки, скорость и момент определяются питающим напряжением. При постоянном питающем напряжении скорость вращения постоянна. Управление подключением обмоток осуществляется транзисторной схемой переключения (рис.3), сигналы на которую поступают с датчика положения ротора. Если условно принять за положительное напряжение вращения вала направление вращения против часовой стрелки, то момент на валу двигателя будет определяться по формуле:
где: q-угол между векторами Ф0 и F; Mmax=Ф0·F; К= 1/ 9810.
Наибольшее значение момента двигателя достигается при = 9°+3°
Рис 2. Формирование результирующей намагничивающей силы.
Система автоматического управления (САУ) (рис.3), управляемая датчиком положения ротора, обеспечивает одновременное открытие транзисторных ключей, одного из группы VT1-VT3 и другого из группы TV4-VT6, что обеспечивает в свою очередь одновременное включение двух статорных обмоток двигателя.
Рис 3. ВЭП. Схема электрическая функциональная.
На рис.4 приведена типовая электрическая схема переключения полюсов вентильного электропривода, где: 1-статорные обмотки ВЭП; 2-ротор двигателя; 3 - ДПД; 4 - САУ.
Рассмотрим работу ВЭП, когда например, открыты транзисторы VT1 и VT6 (рис 4). Тогда ток от источника U будет протекать через эти транзисторы и обмотки двигателя U и W. При этом создается результирующая намагничивающая сила F, которая при взаимодействии с магнитным потоком постоянных магнитов ротора Ф0 создает вращающий момент, величина которого определяется углом рассогласования между векторами Ф0 и F.
Вывод математической модели ВЭП
На рис.4 изображена структурная схема ВЭП, где приняты следующие обозначения: 1-сумматор напряжений (устройство суммирования построено на ОУ); 2-передаточная функция регулятора скорости, которая является суммой форсирующего 1-го порядка и интегрирующего элементов (е1 и е2 - напряжения на входе и выходе регулятора); 3-сумматор напряжений; 4-усилитель мощности на транзисторах и тиристорах; 5-сумматор напряжений (обмотка статора); 6-передаточная функция обмотки статора (Rэ - активное сопротивление обмотки, Т - постоянная времени обмотки, Lэ - индуктивность обмотки); 7-усилитель тока; 8-передаточная функция электромагнитной части электродвигателя, в которой реализуется закон Ампера, т.е. ток преобразуется в силу (Сm - постоянная по моменту, Се - постоянная по ЭДС); 9-передаточная функция по ЭДС электродвигателя; 10-сумматор моментов - ротор электродвигателя (Мт - момент трения; Мр - реактивный момент); 11-передаточная функция механической части электропривода (J - приведенный момент инерции электропривода); 12 - обратная связь по угловой скорости ((в качестве измерителя угловой скорости выступает тахогенератор, закрепленный на валу электродвигателя, который позволяет стабилизировать заданное значение угловой скорости на выходе электропривода); 13 - интегрирующее звено; 14-наблюдающее устройство идентификации (НУИ).
Рис 5. Структурная схема ВЭП.
На основе данной схемы можно получить уравнения описывающие поведение ВЭП:
(2)
Записывая характеристическое уравнение системы (2) можно получить уравнения, которые характеризуют динамику тока в обмотках ВЭП и динамику скорости вращения его вала. Эти уравнения соответственно имеют вид:
(3)
(4)
где приняты следующие обозначения:
,
,
,
,
,
,
,
Таким образом динамика ВЭП описывается двумя линейными дифференциальными уравнениями третьего порядка (3), (4). В качестве переменных состояния выступают частота вращения w вала двигателя и ток в обмотках i. В качестве управляющего воздействия выступает напряжение питания Uз, а в качестве возмущающего воздействия - момент трения и реактивный момент.
Для заданных параметров ВЭП коэффициенты уравнений (3), (4) будут иметь следующие значения:
a1 | a2 | a3 | | | 1 |
1,32E-02 | 1,73E-05 | 1,29E-08 | 7,46E-04 | 2,16E-01 | 1,32E-02 |
Расчет устойчивости
Для исследования устойчивости ВЭП по соответствующей математической модели воспользуемся алгебраическим критерием устойчивости в форме определителей составляемых из коэффициентов характеристического уравнения (критерий устойчивости Гурвица). Критерий устойчивости формулируется следующим образом: для того чтобы система была устойчива, необходимо и достаточно, чтобы все определители Гурвица имели знаки, одинаковые со знаком первого коэффициента характеристического уравнения.
Для характеристического уравнения третьего порядка условия устойчивости будут иметь вид:
D1=а2>0;
D2=а2·а1-а3>0;
D3=а2·а1-а3>0;
В нашем случае условия устойчивости выполняются, следовательно, система характеризующая динамику ВЭП, описываемая уравнениями (3-4) является асимптотически устойчивой.