Выполнение манёвра разгона к Земле.




Сумеет ли экипаж возвратиться на Землю после покорения Луны, если не удастся покинуть окололунную орбиту на командном модуле «Аполлона»?

Обращаю ваше внимание на то, что выполнение данного этапа состоит из следующих необходимых последовательных условий:
- точная ориентация и стабилизация командного модуля на орбите Луны,
- И своевременное включение маршевого двигателя,
- И работа маршевого двигателя на номинальной тяге положенное время,
- И своевременное выключение маршевого двигателя.
Если хотя бы одно из указанных условий не будет выполнено или при его выполнении последует технический отказ, разгонный импульс будет выполнен неправильно или не полностью. Командный модуль с экипажем не сможет покинуть орбиту Луны или же направление полёта к Земле придётся существенно корректировать, для чего согласно официальным данным горючего на борту уже не имеется.
Кроме всего этого, как было сказано раньше, разгонный импульс в сторону Земли согласно схеме экспедиции от НАСА должен быть выполнен с воистину беспрецедентной точностью. Дело в том, что после покидания орбиты Луны со скоростью свыше 2,4 км/с пилотируемый корабль, двигающийся по направлении к Земле по инерции, ускоряется до второй космической скорости для Земли, т.е. свыше 11 км/с. Он находится в сфере действия тяготения Земли согласно данным официальной физики на протяжении 5/6 своего пути, постоянно увеличивая свою скорость, а соответственно, и кинетическую энергию. Если окажется, что этот корабль отклоняется от идеальной траектории, то корректировать направление движения уже нечем – горючее для маршевого двигателя полностью израсходовано, а мощности двигателей ориентации для решения данной задачи недостаточно.

Тем не менее, НАСА утверждает, что во всех 8 пилотируемых полётах к Луне, использовавших некоторое время окололунную орбиту, данный манёвр был выполнен настолько безупречно, что надобности в существенных корректировках направления полёта при приближении к Земле не было.
В данном случае у нас также нет ни одного аналогичного достижения мировой космонавтики, когда автоматическому или пилотируемому кораблю понадобилось бы покидать окололунную орбиту в направлении Земли. Поэтому оценить вероятность успешного исхода такого манёвра на примере реально существовавших аналогичных по своему предназначению систем мы не можем. Как мы уже договаривались, в таком случае мы принимаем максимально допустимую вероятность успешного выполнения данного этапа миссии, которую принимаем равной 99% или 0,99.

 

Полёт к Земле.

Возможно ли успешное выполнение программы экспедиции, если во время полёта к Земле на борту командного модуля «Аполлона» возникнут технические проблемы?

Как мы помним, во время полёта «Аполлона-13» по трассе Земля-Луна якобы произошел взрыв кислородного бака. Данная проблема оказалась критической, т.е. такой, из-за которой выполнение полной программы миссии оказалось невозможным.
Полёт в одну сторону (от Луны к Земле) должен продолжаться почти полтора суток. Само по себе это время достаточно большое для пилотируемых полётов в космосе в те времена. Дело в том, что системы жизнеобеспечения космических полётов – как и многие другие системы космических кораблей в те годы – пребывали ещё на начальной стадии своего развития. И проектировались они только для случая пребывания экипажа на околоземной орбите, но отнюдь не в дальнем космосе, где влияние внешних факторов на человеческий организм было ещё совсем не исследованным. Если присовокупить сюда известный уже в те годы факт о мощном радиоактивном облучении биологических объектов при пересечении пояса Ван Аллена, а также добавить недавно ставший известным факт негативного воздействия на психику человека отсутствия земного магнитного поля, тогда вероятность успешного полёта предлагаемого НАСА космического корабля с тремя членами экипажа по маршруту Луна-Земля вообще стремится к нулю.
И это, не учитывая всевозможные технические неувязки с системами жизнеобеспечения, энергоснабжения, охлаждения, ориентации и связи…

Например, если командный модуль по дороге от Луны к Земле якобы всё время вращался, чтобы обеспечить равномерное прожаривание нагревание, тогда каким образом обеспечивались длительные качественные сеансы дальней радиосвязи с помощью остронаправленных антенн УКВ-диапазона малой мощности?

Особая история – бортовой управляющий «компьютер» «Аполлона». Документация НАСА утверждает, что в нём впервые были применены микросхемы на резисторно-транзисторной логике. Фактически эти микросхемы являлись неким примитивным прообразом микроскопических полупроводниковых кремниево-германиевых логических элементов, появившихся только в начале 70-х годов. Но между микросхемами «Аполлона», которых в этом «компьютере» было в разных моделях от 4100 до 2800 штук, и интегральными микросхемами, использующимися в вычислительной технике с 70-х годов, было очень существенное различие. Если вычислительная мощность интегральной микросхемы зависит от количества элементов базовой математической логики (сложение по модулю два и инвертирование) на одной подложке, то у НАСА в 60-х годах не нашлось другого выхода, чем паять все свои тысячи микросхем с парами трехвводных исключающих ИЛИ на обыкновенные печатные платы и заливать всё это хозяйство эпоксидным компаундом.
В результате этот «компьютер» представлял собой некий ранец, потребляемая мощность которого является большой коммерческой тайной по сегодняшний день. Это неудивительно, ведь даже если американским «левшам» удалось заставить все свои тысячи микросхем на печатной плате надёжно работать при подаваемой мощности на каждую из них хоть по одному ватту (у них же не было современной технологии ARM для процессоров), тогда общее энергопотребление такого «компьютера», работающего, кстати, непрерывно на протяжении всего полёта, должно было составлять никак не меньше нескольких киловатт в час? От какой электросети могла питаться эта пара «утюгов» на протяжении целой недели в космосе?

Второй вопрос – надёжность работы такого компьютера. Ведь никто не знает, как поведёт себя пайка из четырёх тысяч восьмиконтактных микросхем на одной плате при пересечении пояса Ван Аллена. Вдруг зависнет или пара-тройка из тысяч элементов на плате возьмёт да и перегорит. Да ещё в чистом кислороде… Что тогда делать?

Третий вопрос – вычислительная мощность, или, скорее, вычислительные способности этого компьютера. Официальная документация НАСА гласит, что с помощью него якобы обеспечивался контроль полёта, навигация, а также управление командным и лунным модулями «Аполлона», на борту которых было по одному такому компьютеру. И тут же говорится, что все вычисления производились всего в четырёх двухбайтовых регистрах, а оперативная память для выполнения всех операций составляла 2 килобайта. При этом длина блока ПЗУ, в котором по идее должны находиться все алгоритмы, могущие выполняться на данном компьютере, составляла всего 32 килобайта.
Кто хоть немного знаком с принципами работы вычислительной техники и программированием низкого уровня, наверняка согласится со мной, что вряд ли в мире найдётся умелец, умеющий написать на Ассемблере программу управления 16-ю двигателями ориентации и маршевым двигателем для взлёта с Луны, которая умещалась бы в 32 килобайтах. Я подчёркиваю – на таком Ассемблере, в котором используются только команды управления четырьмя регистрами для вычислений и считывания-ввода данных из адресного пространства оперативной памяти и ПЗУ, ведь никакого транслятора или интерпретатора там нет! Если она даже там уместится, то куда девать все остальные программы, которых для управления разными этапами стыковок, расстыковок, манёвров в космосе и различных сервисных операций по самым скромным подсчётам нужно не менее нескольких десятков?

Еще пару слов о том, как работал этот компьютер, или, вернее, как его можно было использовать. Официальный рассказ баронов Мюнхгаузенов гласит, что ввести команду-запрос или некие исходные данные можно было с помощью цифровой клавиатуры в виде двух двузначных чисел, первое из которых означало для компьютера тип действия, а второе – данные для этого действия. Ответом после проведения вычислений были также числовые данные, появлявшиеся на дисплее в виде трёх чисел по 5 цифр в каждом, означающие координаты положения корабля и необходимое приращение скорости для решения той или иной задачи манёвра.
Вы думаете, я шучу? Нет – это утверждается НАСА с совершенно серьёзным выражением лица. Барон Мюнхгаузен отдыхает. Интересно, как они себе представляли процесс управления космическими кораблями в невесомости при стыковках-расстыковках с помощью такого компьютера, или манёвры выхода и схода с окололунной орбиты, или посадку и взлёт с Луны…

Что ещё интересно: в 2009 году НАСА выставило на открытый аукцион… один из интерфейсов этого компьютера – дисплей и клавиатуру. Видимо больше ничего в нём и не было… Эта ситуация напоминает мне анекдот о дрессировщике, который хвастался умениями своего питомца, показывая его чучело.

Итак, лунные первопроходимцы согласно данным НАСА без единой технической проблемы пролетают девять раз от Луны к Земле внутри вышеописанного пепелаца. Если уж фантазировать – так по полной! Давайте представим, что таких полётов на предлагаемой НАСА технике можно удачно выполнить не 9, а 99 из 100. И оценим надёжность выполнения этого этапа экспедиции в 99% или 0,99, чтобы и в этом случае не обидеть защитников лунной аферы.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-09-09 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: