Глава 1
ФИЗИКО-ХИМИЧЕСКОЕ СТРОЕНИЕ МАТЕРИАЛОВ
СТРОЕНИЕ АТОМА И ХИМИЧЕСКАЯ СВЯЗЬ В ВЕЩЕСТВАХ
Исходя из постулата о том, что в атоме разрешенными для электронов орбитами являются только те, на длине которых укладывается целое число длин волн де Бройля λ, определить радиус стационарной орбиты и соответствующий ей энергетический уровень электрона для невозбужденного состояния атома водорода.
Решение
При движении электрона по стационарной орбите радиусом r центробежная сила уравновешивается силой кулоновского притяжения:
(1.1)
где кг — масса электрона;
— скорость движения электрона по орбите;
Кл — заряд электрона;
Ф/м — электрическая постоянная.
В соответствии с постулатом
, (1.2)
где ;
эВ·с — постоянная Планка.
Возводя в квадрат обе части уравнения (1.2), получаем
(1-3)
Подстановка (1.3) в (1.1) дает
(1.4)
Полная энергия электрона в атоме складывается из кинетической энергии движения по орбите и потенциальной энергии притяжения к ядру. Полагая, что потенциальная энергия равна нулю при бесконечном удалении от ядра, можем записать
.
С учетом (1.1) имеем
(1.5)
т. е. полная энергия электрона равна половине потенциальной. Подстановка (1.4) в (1.5) дает следующее выражение для энергии электрона в атоме:
.
Для невозбужденного состояния атома водорода п=1. Тогда имеем
;
.
1.1.2. Определить длину волны излучения атома водорода при переходе электрона с энергетического уровня с главным квантовым числом в основное состояние (
).
1.1.3. В приближении боровской модели атома водорода определите частоту кругового движения электрона по орбите для невозбужденного состояния атома.
1.1.4. Укажите распределение электронов по квантовым состояниям в свободных атомах кремния и меди. Какие электроны участвуют в химической связи, если эти вещества находятся в кристаллическом состоянии? Объясните различия в природе химической связи.
1.1.5. В молекуле воды угол связи составляет
, а расстояние между ионами кислорода и водорода равно
нм. Вычислить электрический дипольный момент молекулы воды, предполагая связь атомов
ионной, и сравните его с моментом
Кл·м, измеренным опытным путем. Чем вызвано несовпадение значений вычисленного и экспериментального моментов?
1.1.6. Электрический дипольный момент частицы вещества (атома, иона, молекулы, группы ионов) в системе СГС выражают в дебаях ( СГС-единицы дипольного момента). При тех же условиях, что и в предыдущей задаче, определите электрический момент (в дебаях) пары
в молекуле воды.
1.1.7. Каждая связь в алмазе имеет энергию
эВ. Сколько энергии необходимо затратить для испарения
г алмаза?
Решение
Число атомов, содержащихся в объеме вещества массой т,
,
где — число Авогадро;
— атомная (или молярная) масса.
Для алмаза массой г
.
Каждый атом углерода в структуре алмаза участвует в четырех ковалентных связях, поэтому число связей вдвое превышает число атомов. Энергия, необходимая для испарения г алмаза,
1.1.8. Какие из перечисленных молекул являются полярными: ,
,
,
,
? Приведите другие примеры полярных и неполярных молекул.
1.1.9*. Изобразите (качественно) зависимость энергии взаимодействия атомов водорода от межъядерного расстояния при различных ориентациях спинов электронов во взаимодействующих атомах. Каково при этом распределение электронной плотности между атомами?
1.1.10*. Определить, какой из двух пар атомов: и
или
и
— характеризуется большей разностью электроотрицательностей?
1.1.11*. В спектре испускания атома водорода есть линия, соответствующая длине волны мкм. Определить изменение энергии атома водорода при излучении, соответствующем данной спектральной линии.
СТРОЕНИЕ ТВЕРДЫХ ТЕЛ
1.2.1*. Исходя из постулата Магнуса о том, что у ионных бинарных соединений устойчивой является лишь такая кристаллическая решетка, в которой меньший по размеру катион окружен более крупными анионами, найдите отношения радиусов ионов противоположного знака , при которых возможно образование устойчивых структур с координационными числами 4, 6, 8 и 12.
Решение
Если координационное число равно четырем, то анионы располагаются по вершинам правильного тетраэдра, а катион — в его центре (рис. 1). Длина отрезка , соединяющего вершину с центром тетраэдра, связана с длиной а ребра соотношением
. В предельном случае для данной координации выполняются равенства:
,
Отсюда имеем
Рис. 1
.
При отношении ионных радиусов структура с координационным числом 4 становится неустойчивой, так как отталкивание анионов друг от друга сильнее их кулоновского притяжения к положительно заряженному иону.
Если координационное число равно шести (рис. 2, а) или восьми (рис. 3, а), то предельные отношения радиусов ионов можно найти из рис. 2, б и 3, б. При октаэдрическом окружении катиона (рис. 2, б) ), откуда
.
Рис. 2.
Если координационное число равно восьми, то анионы располагаются по вершинам куба (рис. 3, б) и выполняются соотношения:
.
откуда следует, что
.
Рис. 3.
Координационное число, равное 12, реализуется лишь в структурах с плотной кубической (рис. 4) или плотной гексагональной упаковкой шаров ионов. В этом случае
.
откуда получаем, что .
На рис. 4 позиции анионов первой координационной сферы показаны светлыми кружочками.
Рис. 4.
Кулоновское взаимодействие между ионами является ненаправленным и ненасыщенным. Ненасыщенность ионной связи проявляется в том, что каждый ион стремится приблизить к себе как можно больше противоположно заряженных ионов, т. е. образовать структуру с возможно более высоким координационным числом. Поэтому координационное число растет с увеличением размера катиона. Пределы изменения отношения радиусов ионов для структур с различным координационным числом приведены в табл. 1.
Таблица 1
Координационное число | ||||
![]() | ![]() | ![]() | ![]() | 1,0 |
1.2.2*. Покажите, что кристаллическая решетка типа алмаза эквивалентна двум взаимопроникающим гранецентрированным кубическим решеткам.
1.2.3*. Радиусы ионов и
равны соответственно
и
нм. Определите, может ли соединение
кристаллизоваться в структуре хлористого натрия.
1.2.4. Приведите примеры металлов, кристаллическая структура которых характеризуется плотной кубической упаковкой ионов-шаров.
1.2.5. Определить, сколько атомов приходится на одну элементарную ячейку в кристаллах с простой, объемно-центрированной и гранецентрированной кубической решеткой.
1.2.6. Гранецентрированная кубическая решетка состоит из атомов одного вида, имеет шесть атомов в центрах граней и, кроме того, восемь атомов в вершинах куба. Доказать, что объем, занимаемый атомами ячейки, составляет объема куба.
1.2.7*. Определить углы между следующими кристаллографическими направлениями в кубическом кристалле: а) и
; б)
и
; в)
и
.
1.2.8. В кубической кристаллической решетке постройте плоскости с индексами Миллера и
.
1.2.9. В систему кубического кристалла входят плоскости
,
,
,
,
,
,
и
. Какие из этих плоскостей параллельны? Какую пространственную фигуру образуют все эти плоскости при взаимном пересечении?
1.2.10. Определить расстояние между ближайшими параллельными плоскостями в кубической кристаллической решетке с периодом а элементарной ячейки.
1.2.11*. Вычислить, сколько атомов располагается на плоскостей
и
в кристаллической решетке кремния, если межатомное расстояние
нм.
Решение
Кремний кристаллизуется в решетке алмаза, где межатомное расстояние равно
большой диагонали куба. Поэтому период решетки
м.
Из рис. 5 следует, что на плоскости элементарной ячейки находится два атома кремния (поскольку каждый угловой атом одновременно принадлежит четырем соседним ячейкам):
. Отсюда поверхностная плотность атомов
.
На рис. 6 показано расположение атомов на плоскости . Равностороннему треугольнику площадью
принадлежит в среднем два атома:
. Поверхностная плотность атомов в этой плоскости
.
![]() | ![]() |
1.2.12*. Приведите примеры полиморфных превращений для элементных веществ и химических соединений. Охарактеризуйте различие свойств политипов.
1.2.13*. Вычислите относительное изменение объема материала при переходе железа из гранецентрированной в объемно-центрированную кубическую решетку, если межатомные расстояния в этих структурах соответственно равны и
нм.
1.2.14*. Ион хлора имеет радиус нм. Каков радиус наименьшего одновалентного положительного иона, который может соседствовать с восемью ионами хлора? Приведите пример щелочно-галоидного соединения, структура которого имеет подобную координацию ионов.
1.2.15*. Докажите, что направление в кубической кристаллической решетке нормально плоскости
.
Решение
В кубической кристаллической решетке координатные оси ортогональны, причем масштабные коэффициенты по всем трем осям одинаковы. Поэтому плоскость отсекает на координатных осях отрезки в пропорции
. На рис. 7 направлению
соответствует вектор
. Для решения задачи достаточно доказать, что вектор
перпендикулярен отрезкам
и
, являющимся следами плоскости
.
Пусть — проекция вектора
на плоскость
. Легко убедиться, что треугольники
и
подобны. Поэтому отрезок
нормален плоскости
, а значит, и вектору
. Аналогично можно показать, что
и
также взаимно перпендикулярны. Отсюда следует, что вектор
является нормалью к плоскости
.
Рис.7
1.2.16*. Укажите кристаллографические направления в ромбической решетке с размерами элементарной ячейки нм;
нм;
нм:
,
,
.
1.2.17. Известно, что алюминий кристаллизуется в решетке гранецентрированного куба с периодом идентичности нм. Вычислите концентрацию свободных электронов, полагая, что на каждый атом кристаллической решетки приходятся три электрона.
Решение
В решетке гранецентрированного куба на одну элементарную ячейку приходится четыре атома. Поэтому число атомов в единице объема
.
Отсюда концентрация электронов
.
1.2.18. Вычислите период кристаллической решетки меди, если ее плотность равна , а элементарная ячейка представляет собой гранецентрированный куб. Определите объем, приходящийся на один атом.
Решение
Рентгеновская плотность кристалла связана с периодом кубической решетки соотношением , где
— масса атома;
— число атомов, приходящихся на одну элементарную ячейку (кратность ячейки). В случае гранецентрированного куба
. Учитывая, что
(см. решение задачи 1.1.7), получаем
м
На один атом решетки приходится объем
.
1.2.19. Расстояние между ближайшими атомами в кристаллической решетке вольфрама равно нм. Известно, что вольфрам имеет структуру объемно-центрированного куба. Найдите плотность материала.
1.2.20. Определите концентрацию свободных электронов в натрии, элементарная ячейка которого представляет собой объемно-центрированный куб с ребром нм.
1.2.21. В чем состоят различия между монокристаллами, поликристаллическими и аморфными веществами?
1.2.22. Приведите примеры точечных и протяженных дефектов структуры реальных кристаллов.
1.2.23*. Определите ковалентный тетраэдрический радиус атома кремния, если известно, что кремний кристаллизуется в структуре алмаза с периодом решетки нм.