Автоматизация биохимических исследований




Хроматография.

Хроматография – это метод разделения и определения веществ, основанный на распределении компонентов между двумя фазами – подвижной и неподвижной. Неподвижной (стационарной) фазой служит твердое пористое вещество (часто его называют сорбентом) или пленка жидкости, нанесенная на твердое вещество. Подвижная фаза представляет собой жидкость или газ, протекающий через неподвижную фазу, иногда под давлением.

Компоненты анализируемой смеси (сорбаты) вместе с подвижной фазой передвигаются вдоль стационарной фазы. Ее обычно помещают в стеклянную или металлическую трубку, называемую колонкой. В зависимости от силы взаимодействия с поверхностью сорбента (за счет адсорбции или по какому-либо другому механизму) компоненты будут перемещаться вдоль колонки с разной скоростью. Одни компоненты останутся в верхнем слое сорбента, другие, в меньшей степени взаимодействующие с сорбентом, окажутся в нижней части колонки, а некоторые и вовсе покинут колонку вместе с подвижной фазой (такие компоненты называются неудерживаемыми, а время их удерживания определяет “мертвое время” колонки). Таким образом происходит быстрое разделение сложных смесей компонентов. Следует подчеркнуть следующие достоинcтва хроматографических методов:

1. Разделение носит динамический характер, причем акты сорбции-десорбции разделяемых компонентов повторяются многократно. Этим обусловлена значительно большая эффективность хроматографического разделения по сравнению со статическими методами сорбции и экстракции.

2. При разделении используют различные типы взаимодействия сорбатов и неподвижной фазы: от чисто физических до хемосорбционных. Это обуславливает возможность селективного разделения широкого круга веществ.

3. На разделяемые вещества можно накладывать различные дополнительные поля (гравитационное, электрическое, магнитное и др.), которые, изменяя условия разделения, расширяют возможности хроматографии.

4. Хроматография – гибридный метод, сочетающий одновременное разделение и определения нескольких компонентов.

5. Хроматография позволяет решать как аналитические задачи (разделение, идентификация, определение), так и препаративные (очистка, выделение, концентрирование). Решение этих задач можно сочетать, выполняя их в режиме “on line”.

Методы хроматографического анализа различаются:

· по агрегатному состоянию системы, в которой проводится разделение - на газовую и жидкостную;

· по механизму разделения - на адсорбционную, распределительную, ионообменную, гель-хроматографию, аффинную и др.

В ряде случаев разделение оказывается результатом нескольких одновременно протекающих процессов с различными механизмами. Это приводит к образованию хроматограммы смешанного типа, но один из процессов всегда является доминирующим.

В газовой хроматографии подвижной фазой является газ. В зависимости от состояния неподвижной фазы газовая хроматография подразделяется на газо-адсорбционную, когда неподвижной фазой является твердый адсорбент и газо-жидкостную, когда неподвижной фазой является жидкость, или точнее пленка жидкости на поверхности частиц твердого адсорбента.

Жидкостная хроматография основана на адсорбции твердым веществом, играющим роль неподвижной фазы, определяемых компонентов, находящихся в растворенном состоянии.

В основе адсорбционной хроматографии лежит различная сорбируемость разделяемых веществ на твердом сорбенте в соответствии с их сродством к адсорбенту. При этом сорбируемость растворителя должна быть незначительной по сравнению с таковой анализируемой смеси. Процесс адсорбции зависит от свойства адсорбента, адсорбируемых соединений, растворителя. В зависимости от этих свойств вещества, подлежащие хроматографическому разделению, образуют адсорбционный ряд выражающий относительное адсорбционное сродство его членов к адсорбенту. Образующееся в колонке адсорбента зональное распределение веществ соответствует их положению в адсорбционном ряду. В качестве адсорбентов в адсорбционно-жидкостной хроматографии применяются органические и неорганические вещества: сахароза, крахмал, оксид алюминия, силикагель, активированный уголь и др.

Ионообменная хроматография основана на способности некоторых твердых веществ (ионитов) обмениваться ионами с подлежащими разделению веществами. Применяемые в ионообменной хроматографии иониты могут быть как органическими, так и неорганическими. Способность к ионному обмену определяется строением ионита, представляющего собой каркас, на котором закреплены активные группы (-СООН, -SO3H, - NH3Cl, -NH2Cl и др.). В зависимости от обмена катионов или анионов иониты делят на катиониты, аниониты и амфолиты. На принципах ионообменной хроматографии основано разделение аминокислот в аминокислотных анализаторах.

Распределительная хроматография основана на распределении компонентов разделяемой смеси между несмешивающимися фазами. Образующая неподвижную фазу жидкость находится на поверхности или в порах твердого носителя, на который наносится смесь веществ, подлежащих разделению. Затем создают ток подвижного растворителя. Чем лучше вещество растворимо в жидкости, играющей роль подвижной фазы, тем дальше оно продвинется по направлению тока растворителя. Вещества, плохо растворимые в подвижной фазе, расположатся ближе к точке нанесения. В зависимости от техники выполнения распределительная хроматография выполняется как колоночная, бумажная или тонкослойная. Методика распределительной хроматографии в колонках аналогична адсорбционной или ионообменной: вначале в колонку с носителем и закрепленным на нем неподвижной фазой вводят небольшой объем раствора смеси компонентов и затем промывают колонку подвижным растворителем.

При бумажной хроматографии разделение проводят на полосах бумаги, где роль неподвижной фазы играет вода, удерживаемая гидрофильными целлюлозными волокнами бумаги, а подвижной фазой является какой-либо органический растворитель. В каждый момент имеет место определенное перераспределение разделяемых компонентов между слоем органического растворителя и водой. В результате одни вещества движутся быстрее вслед за фронтом органического растворителя, другие в той или иной степени отстают, а некоторые вообще остаются на стартовой линии.

При тонкослойном варианте разделение идет в тонком слое носителя. Чаще всего для этих целей используются пластинки из силикагеля (например, Silufol) широко используемые для фракционирования липидов, аминокислот и других биосубстратов.

Гель-хроматография основана на различии в размерах и молекулярных массах белков и других макромолекул, являющихся важнейшей характеристикой молекулы. В качестве материала-носителя в гель- хроматографии используется сшитый декстран (сефадекс), сшитый полиакриламид (биогель Р) и агароза. Они получили широкое распространение как в аналитической, так и в препаративной лабораторной работе, а также в производстве, в химической и биологической промышленности.

Колонка с сефадексом действует по принципу «молекулярного сита». Молекулы большие, чем самые крупные поры разбухшего сефадекса не могут проникать в гранулы и сравнительно быстро проходят в жидкой фазе вне частиц геля, поэтому элюируются первыми. В настоящее время имеется большое число сефадексов, позволяющих разделить белки и полипептиды в диапазоне молекулярных масс от 700 до 800000 Да.

Были разработаны также хроматографические материалы для разделения белков, путем связывания некоторых ионообменных групп с сефадексами. Полученные производные-ДЭАЭ-сефадекс, КМ-сефадекс и другие широко используются при хроматографии.

Аффинная хроматография или (биоспецифическая по сродству хроматография), основана на принципе специфического взаимодействия с особыми веществами (лигандами), закрепленными на носителе. Биологические макромолекулы обладают способностью обратимо связывать многие вещества. Например, ферменты образуют комплексы с субстратами, антитела взаимодействуют с антигенами, мРНК с комплементарной ДНК и т. д. Все эти взаимодействия строго специфичны. Образование специфических комплексов биологических макромолекул, способных в определенных условиях к диссоциации лежит в основе метода разделения получившего название аффинной хроматографии. Если закрепить один из компонентов этого комплекса на матрице, иммобилизовать его, то получится специфический сорбент для второго компонента (аффинат). Нерастворимые аффинаты готовят обычно путем ковалентного присоединения лиганда к нерастворимому носителю. Если смесь белков пропустить через колонку, заполненную таким аффинатом, то все молекулы, которые не обладают сродством к лиганду, закрепленному на носителе пройдут не задерживаясь, а белок, имеющий сродство к аффинному лиганду, будет адсорбироваться на колонке. Вымыть адсорбированный белок с колонки можно буферными смесями с измененной величиной рН, ионной силой, а также введением в состав элюента веществ, ослабляющих связи между белками и лигандами.

Одними из первых биоспецифических сорбентов, были антигены, ковалентно связанные с нерастворимым носителем. Они были использованы для получения моноспецифических антител. Затем аналогичным путем были получены иммобилизованные ферменты. Стало возможным создание ферментных реакторов для получения различных веществ с использованием иммобилизованных ферментов.

Автоматизация гематологических исследований

В современных автоматических устройствах для гематологического анализа используются в основном два технологических принципа - кондуктометрический и оптический.

Основными параметрами, которые позволяют определять современные гематологические анализаторы, являются: количество лейкоцитов, эритроцитов, тромбоцитов, содержание гемоглобина, показатель гематокрита, объем эритроцита, содержание гемоглобина в эритроците, лейкограмма и др.

Кондуктометрический принцип определения заключается в изменении сопротивления клетки в постоянном электрическом поле. Технология определения состоит в том, что фиксируется момент прохода через отверстие малого диаметра (апертуру) клеток крови. Для этого по обе стороны отверстия располагаются электроды с поданным на них напряжением. При протекании через отверстие чистого раствора электролита сопротивление в цепи мало, но в момент прохождения через апертуру клетки оно резко возрастает, что приводит к увеличению напряжения в цепи. Импульсы скачкообразного изменения напряжения фиксируются и подсчитываются специальным датчиком. Специальный прибор (дискриминатор) пропускает импульсы заранее заданной амплитуды, что позволяет регистрировать клетки в зависимости от их размера. О количестве однотипных частиц судят по числу импульсов, возникающих при прохождении клеток крови через апертуру строго определенного размера.

Оптический принцип определения в своей основе имеет измерение величины светопоглощения или светорассеивания. В анализаторах этого типа регистрируются электрооптические импульсы, возникающие при прохождении клеток крови в луче светового потока. Интенсивность импульса прямо пропорциональна размеру исследуемых частиц. Световой луч фокусируется на капилляр, через который проходят клетки, в результате чего происходит либо светопоглощение, либо светорассеяние светового потока. Величина светопоглощения или светорассеяния обусловлена размером, формой и структурой клеток крови.

Для дифференциации клеток крови используется также радиочастотный анализ. Под действием токов высокой частоты, клетки в момент прохождения ими апертуры посылают сигналы, амплитуда которых зависит от размеров ядра, его плотности, характера цитоплазматических включений. Перед подсчетом лейкоцитов вызывают гемолиз эритроцитов гипотоническим раствором, подсчет тромбоцитов проводят после осаждения эритроцитов.

В зависимости от типа анализаторов они делятся на полуавтоматические, где подготовка пробы к исследованию (ее взятие, разбавление соответствующими растворами) производится вручную и полностью автоматические, где все эти процедуры проводятся в автоматическом режиме.

Автоматизация биохимических исследований

По аналогии с гематологическими, существуют полуавтоматические и автоматические биохимические анализаторы. При использовании полуавтоматического прибора реагенты и биопроба смешиваются оператором и подаются в пробозаборник, прибор измеряет оптическую плотность смеси и по заданной программе рассчитывает концентрацию аналита.

При использовании полностью автоматического анализатора необходимо запрограммировать его на необходимые виды анализа, ввести порядок установки проб пациентов на борту прибора и загрузить эти пробы, а также наборы реагентов на борт анализатора. По прошествии времени, необходимого для анализа, прибор выдает результат в печатном и электронном виде.

ВОПРОСЫДЛЯ ОБСУЖДЕНИЯ

1. Основные задачи биохимических методов.

2. Количественные и полуколичественные методы исследования.

3. Фотометрия. Определение, суть метода.

4. Электрофорез. Определение, суть метода.

5. Хроматография. Определение, суть метода.

6. Автоматизированные методы исследований.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2018-01-26 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: