Перспективы развития автомобильных двигателей
Изучаемые вопросы:
Перспективные конструкции автомобильных двигателей; их достоинства и недостатки
При современном развитии техники двигателестроения постоянно стоит вопрос о дальнейшем совершенствовании двигателей. По какому пойти пути? Конструктивно, существующие автомобильные двигатели дошли почти до предела. Главная цель: повышение топливной экономичности, ресурса и экологической безопасности с одновременным повышением удельной мощности. Идут несколькими путями: разработкой альтернативных топлив, присадок к существующим топливам, применением существующих более экологичных видов топлив, созданием адиабатных двигателей, широким внедрением электроники и созданием принципиально новых конструкций.
Наиболее перспективной заменой бензиновым и дизельным двигателям с экологических позиций является мотор, питающийся от так называемых топливных клеток. В качестве источника энергии он использует водород, поэтому выхлопные газы состоят преимущественно из водяного пара и не содержат веществ, загрязняющих окружающую среду. Лидером в области разработки топливных элементов является канадская компания Ballard Power Systems. Ее разработками заинтересовались германо-американский автогигант Daimler-Craysler и Ford Motor. Первый экспериментальный автомобиль с двигателем на топливных клетках – мини-вэн Necar-1 фирмы Ballard Power Systems и Daimler-Craysler представили в 1994 году.
Газовые двигатели
В связи с борьбой за чистоту окружающей среды в последнее время стали особенно уделять внимание газовым двигателям, транспортным и стационарным.
Для транспортных газовых двигателей получение газа обеспечивается двумя способами:
|
– непосредственным производством, путем газификации твердого топлива в газогенераторах;
– путем установки баллонов периодически наполняемых газом.
Газогенераторные машины используют различное газифицированное топливо: древесное, древесно-угольное, антрацитовое, солому, опилки и т.д.
В баллонах используют сжимаемые и несжимаемые газы.
Образование рабочей смеси в газовых двигателях обычно происходит путем непосредственного смешения газа с воздухом в приборах, называемых смесителями и устанавливаемых перед впускным коллектором двигателя.
Газогенераторной установкой называется совокупность всех агрегатов, предназначенных для выработки и подготовки газа, пригодного для использования в двигателе в качестве топлива.
Важнейшей частью газогенераторной установки является газогенератор, в котором из твердого топлива вырабатывается горючий газ. На выходе из газогенератора газ имеет высокую температуру и загрязнен водой, сажей и мелкими кусками обуглившегося топлива. Поэтому важнейшей принадлежностью транспортной газогенераторной установки является агрегат для очистки и охлаждения газа. Обычная схема газогенераторной установки включает в себя в порядке последовательности: газогенератор, грубый очиститель, охладитель, тонкий очиститель.
Исходным топливом газогенераторной установки могут служить разнообразные виды твердых горючих: дрова, древесный уголь, торф, кокс, антрацит, некоторые породы каменных углей, брикеты из опилок, соломы и др.
Поршневые двигатели внутреннего сгорания прошли длительный путь развития и достигли высокой степени совершенства. Необходимо отметить, что у современных поршневых двигателей в основном использованы возможности дальнейшего совершенствования их удельных, мощностных, экономических и весогабаритных показателей. Максимальные значения оборотов серийных двигателей достигают 6000-8000 оборотов в минуту. Ограничение роста числа оборотов объясняется увеличением инерционных сил, механических потерь, повышением механической и тепловой напряженности.
|
В настоящее время средние значения степени сжатия бензиновых двигателей находятся в пределах 6,5…8,5, достигая в некоторых случаях до 9…11. Дальнейшие повышения степени сжатия не могут привести к существенному увеличению индикаторного КПД и к повышению топливной экономичности. Кроме того, в этом случае усложняется конструкция двигателя, увеличиваются механические потери, повышается износ деталей, возникает детонация.
Однако, существует возможность увеличения роста термического КПД у поршневых двигателей за счет увеличения срабатываемого теплоперепада, создав, так называемый адиабатный двигатель. В этом случае тепло, образующееся при сгорании топлива, почти не отводится в охлаждающую среду. Такие работы проводились ЦНИДИ в 80-х годах ХХ века, но не дали существенных результатов. Теоретически это дает большой эффект, а реально – пока нет подходящих жаропрочных металлокерамических материалов, смазывающих масел и т.д. для деталей цилиндропоршневой группы.
Ограниченные возможности и недостатки поршневых двигателей приводят к необходимости частичной, а в некоторых случаях и полной их замене более современными типами двигателей. Таким являются газотурбинные двигатели (ГТД). Они получили широкое распространение в авиации, судостроении и в оборонном транспортном машиностроении.
|
Газотурбинный двигатель отличает от поршневого большая агрегатная мощность. Однако серийного выпуска наземных транспортных ГТД не производится в связи с тем, что они имеют следующие недостатки:
1. Низкий эффективный КПД вследствие значительных тепловых потерь и применения небольших степеней сжатия.
2. Ограничение возможности повышения эффективного КПД из-за высокотемпературного процесса, что ограничивает применение материалов лопаток турбины и сопловых аппаратов. Кроме того, применение регенеративных циклов, вынужденных устанавливать теплообменные аппараты и соединительные газопроводы усложняют конструкцию, увеличивают ее вес и стоимость. Чем меньше мощность, тем сильнее сказываются перечисленные недостатки.
3. Работа на переменных режимах сопровождается резким падением эффективного КПД.
4. Ограниченный срок службы лопаточных аппаратов, находящихся под воздействием высоких температур и больших инерционных нагрузок.
5. Ограниченный срок службы деталей высокоскоростных редукторов.
Теоретически газотурбинные двигатели по сравнению с поршневыми и роторными имеют значительные преимущества, но широкое практическое их использование ограничено из-за указанных выше недостатков.
Газотурбинные двигатели в транспортном машиностроении целесообразно использовать в тех областях, где требуется высокая мощность, не взирая на топливную экономичность (большие грузовые самосвалы, бронетанковая техника и др.).
Роторный двигатель
Начиная с 1958 г. большое внимание уделялось роторным двигателям, первые образцы которых были испытаны в лабораториях фирмы NSU (ФРГ) под руководством изобретателя Ф. Ванкеля.
Удачное решение кинематики роторного механизма, предложенное Ванкелем, позволило осуществить двигатель внутреннего сгорания с постоянным зажиганием смеси.
Роторные двигатели по сравнению с поршневыми имеют следующие преимущества: высокую быстроходность, компактность, малый удельный вес, значительную удельную мощность, низкие механические потери, простоту конструкции и механизмов привода, большую износостойкость, бесшумность в работе, быстрые и легкие пуск и остановку, простоту обслуживания в эксплуатации.
Имеются три принципиально отличных варианта осуществления рабочего процесса трохоидных двигателей: с вращающимся ротором, с вращающимся корпусом и с вращающимися корпусом и ротором одновременно.
Обычное применение нашли двигатели с вращающимся ротором, выполненным по внутренним огибающим и с неподвижным эпитрохоидным корпусом. Эти двигатели имеют следующие преимущества: простоту конструкции, наименьшее количество деталей, небольшие относительные скорости ротора и вала, малый периметр уплотнений, отсутствие механизма газораспределения и отсутствие неуравновешенных сил инерции.
Рис. 16. Схема протекания рабочего процесса двухэпитрохоидного роторного двигателя
Последовательность процессов рабочего цикла можно проследить по одной из сторон ротора (рис. 16). При положении 1 ротора начинается процесс наполнения в рабочую камеру (линия АВ). Одновременно с процессом наполнения продолжается процесс выпуска отработавших газов. Благодаря поступлению свежей смеси осуществляется продувка рабочей камеры с частичной потерей свежего заряда. При положении 3 рабочая камера имеет максимальный объем . Между положениями ротора 3 и 4 процесс сжатия происходит одновременно с дозарядкой рабочей камеры. Положение 4 конец процесса наполнения.
Положение 5 соответствует наименьшему объему рабочей камеры . Между положениями 5 и 6 одновременно совершаются процессы сгорания и расширения. В положении 6 – начало процесса выпуска, который продолжается до достижением ротора положения 8, когда пластина уплотнения вершины ротора В перекроет выпускной канал.
В положении 9 рабочий цикл рассматриваемой камеры заканчивается и начинается рабочий цикл в смежной рабочей камере со стороной ВС.
Рабочий цикл двухэпитрохоидного роторного двигателя (РД) состоит из процессов газообмена, сжатия, сгорания и расширения (рис. 17).
Рис. 17. Полярная диаграмма роторного двигателя
Процессы газообмена РД складываются из выпуска отработавших газов и наполнения рабочей камеры свежей смесью. Процесс выпуска можно разделить на несколько периодов. Первый – предварение выпуска – начинается с момента открытия пластиной уплотнения вершины ротора А выпускного канала и заканчивается при положении ротора, соответствующего . Продолжительность определяется углом ДОН.
Второй период – принудительного выпуска – осуществляется в результате выталкивающего действия ротора, он обозначен углом НОА.
Третий период совмещен с началом процесса наполнения и характеризуется наличием продувки рабочей камеры свежей смесью, он обозначен углом AOG.
В течение четвертого периода одновременно совершаются четыре взаимосвязанных процесса: выпуска и наполнения в рассматриваемой камере, расширения и выпуска в смежной задней рабочей камере.
Процесс с ж а т и я на полярной диаграмме занимает участок корпуса, охватываемый углом BOF. Характерной особенностью РД являются высокие антидетонационные свойства. Для РД наивыгоднейшие степени сжатия из условия достижения наибольшего среднего эффективного давления лежат в
пределах ε = 9…11, а для обеспечения наименьших удельных расходов топлива ε = 8,5…10. Значения среднего показателя политропы сжатия (n1) лежат в пределах 1,365…1,39.
Процесс с г о р а н и я. Основная особенность процесса сгорания состоит в совмещении его с процессом расширения и протекания в увеличивающемся объеме рабочей камеры. Общее влияние состава смеси и угла опережения зажигания на процесс сгорания у РД то же, что и у поршневого. Экономический состав смеси достигается при ά = 1,17…1,2. Роторные двигатели более устойчиво работают на обедненных составах смеси (до ά = 1,27…1,3). Эта способность зависит от места расположения свечи зажигания.
Процесс р а с ш и р е н и я занимает угол FOH, равный ~1040 поворота ротора. Особенностью процесса расширения является совместное его протекание с процессом сгорания и только в конце на участке корпуса он совмещен с процессом выпуска. Вследствие подвода большого количества тепла от догорающей смеси, больших чисел оборотов ротора и затрудняющих условий теплоотвода, средний показатель политропы расширения имеет пониженные значения сжатия (n2 = 1,15…1,2).
Дизельные варианты РД разрабатывались такими фирмами, как Krupp, Klochner – Humbold – Deutz, Daimler – Benz, Jnmar – Diesel.
Основная трудность:
· сложность организации совершенного смесеобразования при впрыске топлива;
· необходимость турбулизации заряда.
Применение способов смесеобразования с разделенными камерами ограничено затруднениями в сокращении требуемой ε при образовании полостей вспомогательных камер, нежелательным перетеканием газа между смежными камерами через отверстия соединительных каналов и сложностью их оптимального расположения. Повышение степени сжатия усложняет их кинематическую схему.
Применение впрыска бензина позволит:
· устранить потери смеси, имеющие место при продувке;
· понизить тепловую напряженность за счет отдачи тепла на парообразование топлива прямо в камере двигателя;
· увеличить наполнение из-за уменьшения сопротивления на впуске и понижения температуры воздуха;
· уменьшить подачу масла на охлаждение ротора;
· уменьшить инерционные силы, нагрузки от них и износы;
· упростить конструкцию впускных трубопроводов и облегчить применение инерционного наддува.
Впрыск можно производить как в рабочую камеру, так и во впускную трубу. Возможно применение факельного зажигания.
Сравнительная оценка поршневых и роторных двигателей
Серийные роторные двигатели (РД) введены в эксплуатацию в 1964 – 1965гг. Роторные двигатели имеют явное преимущество по сравнению с поршневыми по удельным мощностям и весогабаритным показателям. По литровой мощности и удельному весу только поршневые двигатели гоночных машин сравнимы с аналогичными параметрами РД. Экономичность поршневых и роторных двигателей практически одинакова. О долговечности говорить еще рано, так как поршневые двигатели существуют сотню лет, а РД только несколько десятков лет.
Наиболее слабое звено РД это износы пластин радиальных уплотнений. Одним из преимуществ РД является бесшумность работы. Надежность и безопасность РД равноценна поршневым. Особым преимуществом РД по сравнению с поршневым и газотурбинным двигателями является возможность создания унифицированных мощностных рядов с соотношением мощности от 1:1 до 1:10 путем наращивания мощностных секций. И конечно положительным качеством РД является простота конструкции и сравнительно небольшая стоимость.
Недостатками роторных двигателей являются:
1. Ограниченные возможности в образовании требуемой формы камеры сгорания.
2. Трудность обеспечения жидкостной смазки сопряженных пар, непосредственно соприкасающихся с горячими газами.
3. Отрыв пластин радиальных уплотнений от поверхности корпуса.
4. Система уплотнений менее надежна в работе и менее долговечна, чем у поршневых двигателей.
5. Процессы рабочего цикла распределены по отдельным участкам корпуса, что вызывает его неравномерное нагревание и деформацию.
На основании вышеупомянутого следуют выводы, что применять роторные двигатели наиболее целесообразно при низких и средних мощностях, а мощность в односекционном исполнении не должна превышать 100…150 кВт. Роторные двигатели широко применяются в вертолетостроении. В 70…80-е гг. ХХ века проводились большие работы по использованию роторных двигателей в автомобилестроении, однако по вышеперечисленным причинам широкого внедрения они не получили.