Тесты по теории вероятностей и математической статистике




Тест 1

1. Чему равна вероятность увидеть хотя бы одну «пятерку» при бросании двух игральных костей? 10/36

2. В среднем каждое сотое изделие, производимое предприятием, дефектное. Если взять 2 изделия, какова вероятность того, что оба окажутся исправными? 0,9801

3. 20% всех мужчин и 5% всех женщин — дальтоники. Наугад выбранное лицо оказалось дальтоником. Вероятность того, что это мужчина, равна (число мужчин и женщин считается одинаковым)... 0,8

 

4. DX = 1,5. Используя свойства дисперсии, найдите D(2X + 5): 6

 

5. Вероятность того, что дом может сгореть в течение года, равна 0,01. Застраховано 500 домов. Чтобы сосчитать вероятность того, что сгорит не более 5 домов, можно воспользоваться: распределением Пуассона

 

6. Задана таблица распределения случайной величины:

 

x          
p 1/4 1/8 1/4 1/8 1/4


р(X < 3) равно:

7. Куплено 500 лотерейных билетов. На 40 из них упал выигрыш по 1 руб., на 10 по 5 руб., на 5 — по 10 руб. Средний выигрыш равен: 0,28

 

Тест 2
1. Вероятность того, что студент сдаст на «отлично» первый экзамен равна 0,5, второй – 0,4. Какова вероятность того, что студент сдаст на «отлично» оба экзамена равна?

2. Верно ли, что вероятность объединения совместных событий А и В равна сумме вероятностей этих событий?

3. MX = 5, MY = 2. Используя свойства математического ожидания, найдите M(2X — 3Y):

 

4. В пирамиде 5 винтовок, 3 из которых снабжены оптическим прицелом. Вероятность попадания для стрелка при выстреле из винтовки с оптическим прицелом равна 0,95, из обычной винтовки — 0,7. Стрелок наудачу берет винтовку и стреляет. Вероятность того, что мишень будет поражена, равна:

5. Вероятность выиграть в рулетку равна 1/36. Игрок делает 180 ставок. Найти вероятность того, что он выиграет не менее 5 раз, можно с помощью:

 

6. Задана таблица распределения случайной величины:

 

x        
p C 0,4 0,2 0,1

C равно:

 

7. Число грузовых машин, проезжающих мимо бензоколонки, относится к числу легковых машин как 3:2. Известно, что в среднем одна из 30 грузовых и одна из 25 легковых машин останавливается для заправки. Вероятность того, что проезжающая машина будет заправляться, равна:

 

Тест 3

1. Верно ли, что по формуле Бернулли можно найти вероятность числа успехов в серии независимых испытаний?

2. Бросаются 2 кубика. Вероятность того, что сумма выпавших очков равна 3, составит 1/18

 

3. X и Y — независимы. DX = 5, DY = 2. Используя свойства дисперсии, найдите D(2X + 3Y): 38

 

4. Два стрелка стреляют по мишени. Вероятность попадания в цель у одного стрелка 0,7, у другого — 0,8. Вероятность того, что цель будет поражена, равна: 0,94

5. Имеется собрание из 5 томов. Все 5 томов расставляются на книжной полке случайным образом. Вероятность того, что тома расположатся в порядке 1, 2, 3, 4, 5 или 5, 4, 3, 2, 1, равна: 1/60

 

6. Куплено 1000 лотерейных билетов. На 80 из них упал выигрыш по 1 руб., на 20 — по 5 руб., на 10 — по 10 руб. Закон распределения выигрыша описывает таблица:

x        
p 0,89 0,08 0,02 0,01

 

 

7. Случайная величина X принимает значения 7, -2, 1, -5, 3 с равными вероятностями. MX равно: 0,8


 

Тест 4

 

1. События А и В называются независимыми, если...

2. Студенту предлагаются 6 вопросов и 4 ответа на каждый вопрос, из которых он должен указать тот, который ему кажется правильным. Студент не подготовился и случайно угадывает ответ. Вероятность того, что он правильно ответит ровно на половину вопросов, равна

 

Xi -2      
pi 0,1 0,2 0,5 0,2

3. Случайная величина Х задана таблицей распределения:
Математическое ожидание и дисперсия равны:

 

4. Рабочий обслуживает 3 станка. Вероятность того, что в течение часа станок потребует внимания рабочего, равна для первого станка 0,1, для второго 0,2 и для третьего 0,15. Вероятность того, что в течение часа хотя бы один из станков потребует внимания, равна:

5. Прибор состоит из двух элементов, работающих независимо. Вероятность выхода из строя первого элемента при включении прибора — 0,03, второго — 0,06. Вероятность того, что при включении прибора откажет только второй элемент, равна:

 

6. Два стрелка стреляют по мишени. Вероятность попадания в цель у одного стрелка 0,6, у другого — 0,7. Найти вероятность того, что цель будет поражена двумя пулями

 

7. В урне 200 билетов. Из них 10 выигрышных. Вероятность того, что первый вынутый билет окажется выигрышным, равна:


 

Тест 5

 

1. Верно ли, что вероятность совместного появления независимых событий равна произведению их вероятностей? Да

2. Бросается 5 монет. Вероятность того, что выпадет 3 герба, равна: 5/16

 

3. Два стрелка стреляют по мишени. Вероятность попадания в цель у одного стрелка 0,8, у другого — 0,9. Вероятность того, что цель не будет поражена ни одной пулей, равна: 0,02

4. Симметричную монету бросают 2 раза. Если выпадает 0 гербов, то игрок платит 10 рублей. Если выпадает 1 герб, 1 решётка, то игрок получает 1 рубль. Если выпадает 2 герба, то игрок получает 5 рублей. Математическое ожидание выигрыша равно: 0,75

5. Случайная величина распределена равномерно на отрезке [0, 2]. Ее математическое ожидание равно

 

6. Стрелок попадает в цель в среднем в 8 случаях из 10. Вероятность того, что сделав 3 выстрела, он 2 раза попадет, равна: 0,384

7. Случайная величина Х задана рядом распределения:

Xi -1      
pi 0,1 0,2 0,5 0,2

Математическое ожидание и дисперсия равны:

Тест 6

1. Верно ли, что формуле полной вероятности находят апостериорную вероятность события?

2. Бросаются 2 монеты. Вероятность того, что выпадут и герб, и решка равна:

 

3. Завод в среднем дает 28% продукции высшего сорта и 70% — первого сорта. Вероятность того, что наудачу взятое изделие будет или высшего, или первого сорта, равна:

 

4. На некоторой фабрике машина А производит 40% продукции, а машина B — 60%. В среднем 9 из 1000 единиц продукции, произведенных машиной А, и 1 из 250, произведенных машиной B, оказываются бракованными. Вероятность того, что случайно выбранная единица продукции окажется бракованной, равна

 

5. Страхуется 1600 автомобилей, вероятность того, что автомобиль может попасть в аварию, равна 0,2. Чтобы сосчитать вероятность того, что число аварий не превзойдет 350, можно воспользоваться:

6. Случайная величина Х — время ожидания автобуса — имеет равномерное распределение на отрезке [0, 20]. Математическое ожидание, дисперсия и вероятность Р(3 < X < 5) равны:

 

7. Проводится n независимых испытаний, в которых вероятность наступления события A равна p. Вероятность того, что событие A наступит M раз, вычисляется по …


 



Поделиться:




Поиск по сайту

©2015-2025 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-05-22 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: