Вегетативная нервная система. Общая схема строения и функции




Вегетативная нервная система может рассматриваться как комплекс структур, входящих в состав периферического и центрального отделов нервной системы, обеспечивающий регуляцию функций органов и тканей, направленную на поддержание в организме относительного постоянства внутренней среды (гомеостаз). Кроме того, вегетативная нервная система участвует в осуществлении адаптационно-трофических влияний, а также различных форм физической и психической деятельности.

Входящие в состав головного и спинного мозга структуры вегетативной нервной системы составляют центральный ее отдел, остальные - периферический. В центральном отделе принято выделять надсегментарные и сегментарные вегетативные структуры. К надсегментарным относятсяучастки коры больших полушарий (главным образом располагающиеся медиобазально), а также некоторые образования промежуточного мозга, прежде всего гипоталамуса. Сегментарные структуры центрального отдела вегетативной нервной системы располагаются в стволе головного мозга и в спинном мозге. В периферической нервной системе вегетативная ее часть представлена вегетативными узлами, стволами и сплетениями, афферентными и эфферентными волокнами, а также вегетативными клетками и волокнами, находящимися в составе структур, которые обычно рассматриваются как анимальные (спинномозговые узлы, нервные стволы и пр.), хотя на самом деле имеют смешанный характер.

Среди надсегментарных вегетативных образований особую значимость имеет гипоталамический отдел промежуточного мозга, функция которого в значи- тельной степени контролируется другими структурами головного мозга, в том числе корой больших полушарий. Гипоталамус обеспечивает интеграцию функций анимальной (соматической) и более древней в филогенетическом отношении вегетативной нервной системы.

Вегетативная нервная система известна также как автономная ввиду ее некоторой, хотя и относительной, автономности, или висцеральная в связи с тем, что через посредство ее осуществляется регуляция функций внутренних органов.

20.

21.

30. Утомление мышц
Утомление — это временное снижение или потеря работоспособности, т. е. результат предшествовавшей работы. Утомление мышцы в организме в условиях кровообращения зависит не только от величины произведенной ею длительной работы, а от числа поступающих к ней волн возбуждения, вызывающих ее сокращение. При той же частоте раздражения и других равных условиях утомление появляется раньше при большей нагрузке мышцы. При той же нагрузке и других равных условиях утомление наступает раньше при более частых раздражениях. В начале работы высота сокращений увеличивается, а затем признаками развивающегося утомления являются постепенное уменьшение высоты сокращений, увеличение их продолжительности и нарастание контрактуры. Развитие утомления зависит от изменения обмена веществ, кровообращения, температуры и других условий. Чем выше обмен веществ и лучше кровообращение, тем позднее наступает утомление. Оно наступает значительно раньше, когда мышца сокращается, растягиваясь грузом при изометрическом сокращении, и позднее в том случае, когда она сокращается без груза, а следовательно, без напряжения.
Если довести мышцу до полного утомления раздражением электрическим током, то после перемены направления тока ее работоспособность сразу восстанавливается. Это восстановление объясняется изменением состояния белков мышцы и сдвигами ионов на полюсах тока. Изолированная мышца уменьшает свою работу или даже перестает сокращаться, когда запас гликогена составляет половину исходного количества. Эти факты не подтверждают теорию истощения (Шифф, 1868), которая объясняет утомление мышцы израсходованием веществ, освобождающих энергию для ее работы. Однако запасы гликогена в организме человека ограничены и составляют 300-400 г. При очень интенсивной работе они потребляются за 1,5-2 ч, что приводит к такому снижению содержания сахара в крови, при котором работа становится невозможной. Введение сахара в организм восстанавливает его работоспособность.
Теория отравления мышцы при утомлении накапливающимся в ней особым ядом — кенотоксином (Вейхардт, 1904) оказалась необоснованной. Но есть доказательства того, что утомление иногда связано с отравлением возбуждающихся структур продуктами обмена веществ, главным образом фосфорной и молочной кислотами в момент их образования. Остаточные продукты обмена веществ как бы засоряют организм и вызывают утомление — теория засорения (Пфлюгер, 1872).
Накопление фосфорной и молочной кислот уменьшает работоспособность мышцы. Изолированное мышечное волокно в отличие от целой мышцы утомляется значительно позднее при одном и том же числе раздражающих импульсов. Это объясняется тем, что конечные продукты обмена веществ быстрее удаляются из него. В тренированной мышце вследствие большого ускорения анализа и синтеза веществ, обеспечивающих ее работу, утомление наступает позднее. После промывания кровеносных сосудов изолированной мышцы, доведенной до полного утомления, следовательно, после удаления из нее части остаточных продуктов обмена веществ она вновь начинает сокращаться несмотря на то, что не восстановился запас углеводов и кислорода. Эти факты доказывают, что остаточные продукты распада веществ, образующиеся в работающей мышце, — одна из причин ее утомления.
Существует также теории удушения (М. Ферворн, 1903), приписывающая главную роль в утомлении недостатку кислорода. Известно, что работа может продолжаться десятки минут и даже часы без утомления, когда.уровень потребления кислорода ниже предела его поступления, возможного для работающего (истинное устойчивое состояние). Когда потребление кислорода достигает максимума, оно может находиться на постоянном уровне, но не обеспечивает потребность организма в кислороде (кажущееся, или.южное, устойчивое состояние) и работа в этом случае может продолжаться не больше 10-40 мин.
Утомление является нормальным физиологическим процессом, который приводит к прекращению работы. Во время перерывов в работе восстанавливается работоспособность мышц.

31. Энергетика мышечного сокращения

В динамическом режиме работоспособность мышцы определяется скоростью расщепления и ресинтеза АТФ. При этом скорость рас щепления АТФ может увеличиваться в 100 раз и более. Ресинтез АТФ может обеспечиваться за счет окислительного расщепления глюкозы. Действительно, при умеренных нагрузках ресинтез АТФ обеспечивается повышенным потреблением мышцами глюкозы и кислорода. Это сопровождается увеличением кровотока через мышцы примерно в 20 раз, увеличением минутного объема сердца и дыхания в 2—3 раза. У тренированных лиц (например, спортсмена) большую роль в обеспечении повышенной потребности организма в энергии играет повышение активности митохондриальных ферментов.

При максимальной физической нагрузке происходит дополнитель ное расщепление глюкозы путем анаэробного гликолиза. Во время этих процессов ресинтез АТФ осуществляется в несколько раз быстрее и механическая работа, производимая мышцами также больше, чем при аэробном окислении. Предельное время для такого рода работы составляет около 30 с, после чего возникает накопление молочной кис лоты, т. е. метаболический ацидоз, и развивается утомление. Анаэробный гликолиз имеет место и в начале длительной фи зической работы, пока не увеличится скорость окислительного фосфорилирования таким образом, чтобы ресинтез АТФ вновь сравнялся с его распадом. После метаболической перестройки спортсмен об ретает как бы второе дыхание. Подробные схемы метаболических процессов приведены в руководствах по биохимии.

32. Общий план организации и функции сенсорных систем

В составе сенсорной системы различают З отдела. 1) периферический, состоящий из рецепторов, воспринимающих определенные сигналы, и специальных образований, способствующих работе рецепторов (эта часть представляет собой органы чувств — глаз, ухо и др.); 2) проводниковый, включающий проводящие пути и подкорковые нервные центры; 3) корковый — области коры больших полушарий, которым адресуется данная информация.

Нервный путь, связывающий рецепторе корковыми клетками, обычно состоит из четырех нейронов: первый, чувствительный нейрон расположен вне ЦНС — в спинномозговых узлах или узлах черепномозговых нервов (спиральном узле улитки, вестибулярном узле и др.); второй нейрон находится в спинном, продолговатом или среднем мозге; третий нейрон — в релейных (переключательных) ядрах таламуса (промежуточный мозг); четвертый нейрон представляет собой корковую клетку проекционной зоны коры больших полушарий.

Основные функции сенсорных систем:

сбор и обработка информации о внешней и внутренней среде организма;
осуществление обратных связей, информирующих нервные центры о результатах деятельности;
поддержание нормального уровня (тонуса) функционального состояния мозга.
Разложение сложностей внешнего и внутреннего мира на отдельные элементы и их анализ И. П. Павлов считал основной функцией сенсорных систем (анализаторов). Помимо первичного сбора информации важной функцией сенсорных систем является также осуществление обратных связей о результатах деятельности организма. Для уточнения и совершенствования различных действий человека, в первую очередь двигательных, ЦНС должна получать информацию о силе и длительности выполняемых сокращений мышцами, о скорости и точности перемещений тела или рабочих снарядов, об изменениях темпа движений, о степени достижения поставленной цели и т. п. Без этой информации невозможно формирование и совершенствование двигательных навыков, в том числе спортивных, затруднено совершенствование техники выполняемых упражнений.

Наконец, сенсорные системы вносит свой вклад в регуляцию функционального состояния организма. Импульсация, идущая от различных рецепторов в кору больших полушарий как по специфическим, так и по неспецифическим путям, является существенным условием поддержания нормального уровня ее функционального состояния. Искусственное выключение органов чувств в специальных экспериментах на животных приводило к резкому снижению тонуса коры и засыпанию. Такое животное просыпалось лишь во время кормления и при позывах к мочеиспусканию или опорожнению кишечника.

33. Классификация рецепторов
Рецепторы — это специализированные чувствительные образова ния, воспринимающие и преобразующие раздражения из внешней и внутренней среды организма в специфическую активность нервной системы.

Адекватные раздражители — это те раздражители, к энер гии которых рецепторы наиболее чувствительны.

В зависимости от вида адекватных для них раздражителей, рецепторы подразделяют на

механорецепторы,
фоторецепторы,
терморецепторы
хеморецепторы,
реагирующие, соответ ственно, на механические, световые, температурные и химические стимулы.

По качеству вызываемых раздражителями ощущений (мо дальности) рецепторы классифицируют на слуховые,
зрительные,
обонятельные,
вкусовые,
тактильные,
температурные,
болевые.
По дальности расположения воспринимаемого стимула рецепторы являются

дистантными (слух, зрение),
контактными (осязание, обоняние, вкус).
интероцепторами — это рецепторы, воспринимающие раздражители из внут ренней среды организма, (рецепторы сосудов, внутренних органов, а также рецепторы двигательного ап парата, называемые проприоцепторами).
По месту приложения раздражителя рецепторы являются

первичнонувствующими (тактильные, обонятельные, интеропроприоцепторы),
вторичнонувствующими (зрительные, слуховые, вестибуляторные, вкусовые).
Первичночувствующие рецепторы трансформируют энер гию стимула в нервную активность непосредственно в сенсорном нейроне, и по его аксону без промежуточного преобразования нерв ная активность передается к сенсорному ядру (первый сенсорный уровень). Вторичночувствуюшие рецепторы представляют собой высокоспециализированные эпителиальные клетки, к которым подходят нервные волокна (сенсорные волокна) периферического сенсорного ганглия, образуя с клетками синаптические контакты. Таким обра зом, нервная активность в сенсорных нейронах возникает лишь после синаптического преобразования рецепторного потенциала вы сокоспециализированных клеток, а не в самой нервной клетке.

Свойства рецепторов

Главным свойством рецепторов является их избирательная чувствительность к адекватным раздражителям. Большинство рецепторов настроено на восприятие одного вида (модальности) раздражителя — света, звука и т. п. К таким специфическим для них раздражителям чувствительность рецепторов чрезвычайно высока. Возбудимость рецептора измеряется минимальной величиной энергии адекватного раздражителя, которая необходима для возникновения возбуждения, т.е. порогом возбуждения.

Другим свойством рецепторов является очень низкая величина порогов для адекватных раздражителей. Например, в зрительной сенсорной системе возбуждение фоторецепторов может возникнуть при действии световой энергии, которая необходима для нагревания 1 мл воды на 1 гр. по С в течение 60000 лет. Возбуждение рецепторов может возникать и при действии неадекватных раздражителей (например, ощущение света в зрительной системе при механических и электрических раздражениях). Однако в этом случае пороги возбуждения оказываются значительно более высокими.



Поделиться:




Поиск по сайту

©2015-2025 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-13 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: