К одним из важнейших принципов науки о процессах и аппаратах химической технологии относятся:
- теоретические и технологические обобщения
- выявление физико-химических аналогий основных процессов.
При исследовании и расчете процессов и аппаратов важно знать кинетические закономерности основных процессов химической технологии.
Кинетика – это учение о механизмах и скоростях процессов, в том числе гидродинамических, тепло- и массообменных. Кинетика является научной основой создания новых и совершенствования действующих аппаратов химической технологии.
По общепринятой классификации, основанной на кинетических закономерностях процессов, различают г идромеханические процессы.
Основой для архитектурно-строительной разработки проекта служит технологическая производственная схема, которая представляет собой графическое изображение функциональной зависимости между отдельными производственными процессами, осуществляемыми в данном цехе.
Предприятия химической и нефтехимической промышленности применяют химическую технологию и выпускают продукцию следующих классов:
- продукцию неорганической химии и горно-химическое сырье;
- полимеры, пластические массы, химические волокна;
- лакокрасочные материалы;
- синтетические красители и органические продукты;
- продукты органического синтеза (нефтехимия, коксохимия, лесохимия);
- химические реактивы и особо чистые вещества;
- медикаменты и химико-фармацевтические изделия;
- резинотехнические и асбестовые изделия.
Технологическое оборудование – определяющий элемент застройки большинства химических и нефтехимических предприятий. Его можно разделить на 5 групп:
|
- машинное оборудование (насосы, компрессоры, воздуходувки, холодильные машины и др.);
- аппараты, в которых осуществляются химические процессы (реакторы);
- аппараты, в которых осуществляются массообменные процессы – колонны;
- емкости;
- теплообменники.
Машинное оборудование размещается, как правило, в отапливаемых зданиях, в то время как условия эксплуатации колонного оборудования позволяют устанавливать его на открытых площадках, на этажерках, специальных постаментах, а особо крупное – на собственных фундаментах; только в редких случаях в суровых климатических условиях часть такого оборудования нуждается в укрытиях.
Вынос технологического оборудования из отапливаемых помещений на открытые площадки этажерки и под навесы – одна из важнейших тенденций в строительстве химических объектов.
Увеличение производительности аппаратов оказывает существенное влияние на снижение удельного расхода территории и капитальных затрат. Это позволяет установить насосы, компрессоры и др. машины порознь, открыто, приблизив их к основному технологическому оборудованию и соответственно уменьшить протяженность коммуникаций.
Анализ процессов, номенклатуры применяемого оборудования, а также принципов его комбинирования показывает, что в химической технологии определилась система структурных единиц, каждая из которых – составная часть более крупной и может функционировать самостоятельно. Использование этого принципа в планировке позволяет разрабатывать на основе определенного модуля пространственные структуры, которые пригодны для построения системы любой сложности, а также устанавливать единые принципы компоновки всех ее элементов. Это дает возможность вести разработку даже для самой сложной структуры (например, комбината) последовательно, сохраняя на любом уровне разработки единство стиля и, в то же время, учитывая любые конъюнктурные требования.
|
Процессы и аппараты химической технологии
Виды оборудования химической технологии
4. Особого внимания требует составление схемы стадий химического превращения, так как проведение технологического процесса при этом предопределяет во многом экономическую эффективность всего производства в целом.
Исходными данными для составления операционной схемы в этом случае являются данные по термодинамике, кинетике, механизму химической реакции, данные о фазовом состоянии реагентов. На основании этих данных необходимо задаться определенным типом аппарата. При проведении стадии химического превращения приходится иметь дело с явлениями различной физико-химической природы: химическими, тепловыми, диффузионными и гидромеханическими. Они, как правило, совмещены в объеме аппарата и характеризуются большим числом элементов и связей, иерархий уровней элементарных физико-химических эффектов, связанных цепью причинно-следственных отношений.
Поэтому необходимо стремиться, прежде всего, провести качественный анализ физико-химической системы и процессов, протекающих в ней. Следует заметить, что глубина детализации зависит от степени изученности рассматриваемой системы и явлений, связанных с проектируемым процессом.
|
На основе проведенного анализа можно составить набор операций, обеспечивающих стадию химического превращения, и определить их локализацию. Результаты анализа можно представить в текстовом виде или дополнить текст графической.
Выбирая определенную операцию или их набор, надо точно уяснить достигаемую цель. Необходимо иметь представление, как осуществляется та или иная операция. Например, целью перемешивания может являться:
- ускорение течения химической реакции;
- равномерное распределение твердых частиц в объеме жидкости;
- интенсификация теплообмена.
При составлении операционной схемы стадии выделения целевого продукта решаются задачи:
- выпуск готовой продукции в соответствие с требованием стандартов и технических условий;
- максимально возможная утилизация побочных продуктов;
- выделение и регенерация не прореагировавшего сырья и вспомогательных продуктов.
Обычно эти задачи решаются за счет использования процессов дистилляции и ректификации, кристаллизации, переосаждения, сорбционных процессов и т. д. Критерием выбора процесса или комбинации процессов является удовлетворение требований стандартов и экономическая эффективность.
Набор операций зависит от принятия решения по выбору вывода из цеха готовой продукции (по трубопроводам, в цистернах, бочках, контейнерах, мешках и т. п.).
5. После того, как определены технологические свойств исходных сырьевых материалов и подобран рецепт сырьевой смеси, производится формирование укрупненной технологической схемы. Как правило, анализировать нужно несколько вариантов с целью выбора из них наиболее рационального. Анализ каждого варианта технологической схемы начинается с расчета материального баланса завода. Материальный баланс - это список потоков основных технологических материалов с указанием их годовых расходов. На основании данных материального баланса решаются задачи, необходимые для предварительной оценки технико-экономических показателей завода и дальнейшей проектной проработки.
Работа расчёта производится поэтапно.
Этап 1. Определение ассортимента выпускаемой продукции.
При решении этой задачи следует учитывать как технологические, так и экономические факторы. К экономическим относятся: потребность региона в различных марках цемента, уровень оптовых цен, а также наличие необходимых ресурсов и их стоимость.
Технологические факторы - это закономерности изменения свойств, например, цемента в зависимости от состава цементной шихты и технологических режимов его производства.
Задача сводится к поиску такого ассортимента производимого цемента, который обеспечивает максимальную прибыль с учетом ограничений на выпуск отдельных марок цемента и на возможность использования различных ресурсов.
Этап 2. Ввод информации о технологических потоках (материалах).
Здесь вводятся цифры и наименование потока, а также параметры, характеризующие технологические свойства, удельные расходы различных ресурсов для производства данного материала, планируемые технологические операции (шифр операции, режим работы, нормы потерь).
Этап 3. Расчет материального баланса.
Здесь окончательно формируется проектируемая технологическая схема, которая фиксируется в виде описаний технологических потоков в виде таблицы материального баланса и, наконец, в виде чертежа технологической схемы.
Этап 4. Оценка экономических показателей проектируемого объекта.
Из информации о выполняемых на проектируемом объекте технологических операциях, нормы расхода натуральных показателей, а также их цены для района строительства, рассчитываются следующие технико-экономические показатели проекта:
- полную потребность в ресурсах;
- стоимость основных фондов;
- себестоимость реализуемой продукции;
- годовую прибыль;
- предполагаемый срок окупаемости затрат на строительство завода.
Этап 5. Выпуск сопутствующих документов.
Литература:
Основная:
1. Основы проектирования химических производств: Учебник для вузов / Под ред. А. И. Михайличенко. – М.: ИКЦ «Академкнига» 2010. – 371 с.
2. Технология чистых помещений. Основы проектирования, испытаний и эксплуатации / В. Уайт. - Изд-во «Клинрум», 2008.
3. Проектирование чистых помещений. Под ред. В. Уайта. Пер. с англ. - М.: изд. "Клинрум", 2004. - 360 стр.
4. Основы проектирования химических производств: Учеб. пособие / Дворецкий С.И., Кормильцин Г.С., Калинин В.Ф. - М.: Издательство "Машиностроение-1". 2005. 280 с.
5. Нормирование фармацевтического производства. Обеспечение качества продукции / В. В. Береговых, А.П.Мешковский. – М.: Издательство ЗАО «Информационно-издательское агентство «Ремедиум», 2001. – 527 с.
Дополнительная:
1. Архитектурное проектирование: учебник для студ. сред. проф. образования / М. И. Тосунова, М. М. Гаврилова. – 4-е изд., перераб. и доп. – М.: Издательский центр «Академия», 2009. – 336 с.
2. Большой справочник по конструкциям и материалам современных зданий, 2006. — 620 с.
3. СТРК 1617. Надлежащая производственная практика (GMP).
4. Спицкий О.Р., Александров О.В. GEP — Надлежащая инженерная практика. Рецепт. — № 2 (88). — 2013. — С. 7—14.
5. Спицкий О.Р. Надлежащая инженерная практика (GEP) как система. инженерного менеджмента. Фармацевтическая отрасль. — № 6(29). — 2011. — С. 50—53.
6. Allen E., Iano J. Fundamentals of Building Construction: Materials and Methods, 6th Edition. — Hoboken, New Jersey: John Wiley & Sons, Inc., 2014. — XVI, 1007 p.
7. Hicks Tyler G. Handbook of Civil Engineering Calculations, Publisher: McGraw-Hill Publication: 2007, English Isbn: 9780071472937 Pages: 840
8. ICH Q10 Фармацевтическая система качества