Задания для самопроверки




Практическое занятие 12 МЕТОДИКА ИЗУЧЕНИЯ АРИФМЕТИЧЕСКИХ ДЕЙСТВИЙ В КОНЦЕНТРАХ (ДЕСЯТОК, СОТНЯ, ТЫСЯЧА, МНОГОЗНАЧНЫЕ ЧИСЛА)

Задания для самопроверки

1. Продумайте трудности, которые могут возникать при изучении арифметических действий.

По мере овладения учащимися натуральной последовательностью чисел и свойством этого ряда нужно знакомить и с приемами сложения и вычитания, опирающимся на это свойство натурального ряда чисел. Дети учатся этим приемам прибавлять и вычитать единицу из числа, т.е. присчитывать и отсчитывать по 1.

Когда учащиеся научились прибавлять и вычитать по одному, надо учить их прибавлять по два. Когда учащиеся овладели приемами присчитывания, учитель знакомит их с приемами отсчитывания. Если приемами присчитывания ученики первого класса овладевают довольно быстро, то приемами отсчитывания - намного медленнее.

Трудность состоит в том, что прием отсчитывания основан на хорошем знании обратного счета, а обратный счет для многих учащихся первого класса труден. Кроме того, ученики плохо запоминают - сколько нужно отнять, сколько уже отняли, сколько ещё надо отнять.

При изучении каждого числа первого десятка учащиеся получают представление и о составе этих чисел.

В начале необходимо давать такие упражнения, в которых одно из слагаемых воспринимаются детьми наглядно, а второе они отыскивают по представлению.

Непреодолимые трудности для ребенка могут возникнуть при несоблюдении степени трудности решения примеров. Поэтому очень важно соблюдать последовательность в выборе примеров, учитывая их нарастающую степень трудности, и тщательно отрабатывать каждый случай. Умножение и деление многозначных чисел представляет гораздо больше трудностей, чем сложение и вычитание. Это связано с тем, что ученики не твердо знают таблицу умножения. Даже те учащиеся, которые запоминают таблицу умножения, затруднялись применить её при решении примера с многозначными числами, то есть актуализировать свои знания и использовать их.

Трудности возникают и тогда, когда надо единицы высшего разряда перевести в низший разряд, удержать их в памяти. Неумение долгое время сосредоточить внимание на выполнение действия приводит к тому, что учащиеся низшие разряды числа умножают правильно, а при умножении высших разрядов допускают ошибки.

2. Составьте таблицу. Средства, используемые при изучении арифметических действий

 

Средство Характеристика На каком этапе урока используется
Счетные палочки Счетные палочки -один из самых простых и ценных средств обучения. Их можно широко применять при изучении первого и второго десятка и темы «Сотня». С их помощью наглядно объяснить учащимся образование и состав чисел натурального ряда изучать арифметические действия. Кроме того, они применяются и при пропедевтике геометрии. Из палочек дети строят различные геометрические фигуры: треугольники, четырехугольники и т.д. Примером использования палочек для контроля знаний является игра «молчанка», учитель называет число (1, 2, 3, 4, 5), а ученики берут в руки и называют соответствующие количество палочек.  
Карточки Карточки используются на всех этапах урока: при проверке домашнего задания, объяснении и закреплении нового материала, повторении пройденного и осуществлении контроля над знаниями учащихся. Разрезные цифры и знаки арифметических действий и отношений - это набор карточек с рельефными изображениями в виде аппликационного рисунка чисел (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90) и знаков (+,-, =>, ^). Размеры таких карточек приблизительно 5-5,5 х 9,5 см - для однозначных чисел и знаков, 10-11 х 9,5 см - для двухзначных чисел. С помощью разрезных цифр и знаков арифметических действий можно эффективно организовать фронтальную работу. На всех этапах урока
Абак с подвижными цифрами и пособие для изучения многозначных чисел Цифры и слова написаны как плоским, так и рельефно-точечным шрифтом. Данное пособие позволяет проводить с учащимися разнообразные упражнения по нумерации чисел в пределах 1000. Например: «покажи и прочитай число, содержащее 3 единицы первого разряда, 1 единицу второго разряда и 7 единиц третьего разряда, «покажи и прочитай число, содержащее 6 сотен, 4 десятка, 5 единиц. Кроме того, этот абак можно использовать при устном счете, когда производится действия в пределах 100. Пособие для изучения многозначных чисел представляет собой карточный лист, с двумя горизонтальными рядами карманчиков в каждом ряду. В нижние карманы вставляются карточки с цифрами, которые написаны плоским и рельефно-точечным шрифтом одновременно. В первый (если считать слева направо) карман вставляются карточки с цифрой 2 и т.д. Верхний ряд карманов предназначается для составления учащимися многозначных чисел. Такое пособие можно использовать при выполнении всевозможных, упражнений по нумерации чисел в пределах класса миллионов, а также при выполнении устного счета. Кроме того, это пособие можно применять как при объяснении нового материала, так и при закреплении и особенно при проверке знаний учащихся.  
Счеты Во время подготовительного периода на уроках косточки счетов могут быть использованы в качестве счетного материала при усвоении последовательности натурального ряда чисел в прямом и обратном направлении. Например, по заданию учителя учащиеся могут откладывать по одной косточке справа налево и хором считать: «один, два, три» (в пределах изученного), а затем отбрасывая по одной косточке слева направо и пересчитывая оставшиеся, вести обратный счет. Опыт показал, что подобные упражнения способствуют сознательному прочному и более быстрому овладению слепыми детьми знаниями, предусмотренными темой «нумерация, которые им зачастую неподготовленным к школе” даются труднее, чемих зрячим сверстникам. Расположение косточек (параллельными горизонтальными рядами) можно использовать для сравнения двух множеств, форсирования понятий о равенстве и неравенстве. Так, используя счеты можно проводить упражнения, связанные с уравнением двух множеств, в одном из которых содержится больше элементов, чем в другом. На счетах могут быть проиллюстрированы свойства сложения и вычитания (прибавление суммы к числу суммы), вычитание суммы из числа и числаиз суммы, вычислительные приемы, основанные на применении этих свойств. Во время подготовительного периода
       

Одной из задач начального курса математики является усвоение младшими школьниками математической терминологии. Оцените правильность (корректность) используемой учителем терминологии при формулировке заданий.

• Какая цифра пропущена в примере: 3 +... = 4?

Правильно следовало бы сформулировать это задание, так: Какое слагаемое пропущено в данном выражении (примере): 3 +... = 4?

• Какое число надо отнять в записи: 8 –... = 6?

Правильно следовало бы сформулировать это задание, так: Какое вычитаемое следует отнять в выражении: 8 –... = 6?

• Какое слагаемое пропущено в равенстве:... – 4 = 2?

Правильно следовало бы сформулировать это задание, так: Какое уменьшаемое пропущено в данном выражении:... – 4 = 2?

• Какое выражение больше: 3 + 4 или 2 + 5?

Правильно следовало бы сформулировать это задание, так: Значение какого выражения больше: 3 + 4 или 2 + 5?

• Выберите верные выражения: 5 + 2 = 7; 8 – 2 = 5; 4 + 5 = 9; 9 – 3 = 5.

Правильно следовало бы сформулировать это задание, так: Выберите верные утверждения: 5 + 2 = 7; 8 – 2 = 5; 4 + 5 = 9; 9 – 3 = 5.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2022-12-31 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: