отказал электровентилятор




В. Банников

Если в автомобиле

отказал электровентилятор

 

Для улучшения топливной экономичности, снижения уровня токсичности отработавших газов, а также обеспечения более благоприятных условий работы двигателя на многих современных моделях легковых автомобилей (например, «Жигули» ВАЗ-2103,2104, 2105, 2106, 2107, 2108, 2109, «Чайка» ГАЗ-14, «Волга» ГАЗ-3102, «Москвич» АЗЛК-2141, 21412) вместо обычного вентилятора с механическим приводом в системе охлаждения двигателя применяют электровентилятор.

Достоинства такого способа охлаждения двигателя очевидны. Во-первых, в течение запуска холодного двигателя электровентилятор выключен, поэтому двигатель прогревается значительно быстрей, существенно меньшее время работает при заведомо неоптимальном температурном режиме, характеризуемом не только увеличенным расходом топлива, но и повышенным выбросом в атмосферу вредных компонентов отработавших газов. Во-вторых, с использованием электровентилятора исключаются случаи его работы на большой скорости движения автомобиля, когда естественный обдув двигателя вполне достаточен.

Вместе с тем многолетней практикой эксплуатации автомобилей, двигатель которых оборудован электровентилятором, выявлено слабое звено такой системы охлаждения — датчик включения электровентилятора. При отказе датчика дальнейшая эксплуатация автомобиля становится затруднительной, в особенности в жаркое время и при небольшой скорости движения в транспортном потоке, поскольку электровентилятор не включается и работающий двигатель быстро перегревается.

Но как быть, если этот датчик вышел из строя, а приобрести новый не удается? Оказывается, используя электронику, можно найти ему вполне достойную замену. Однако прежде чем перейти к описанию этой замены, целесообразно рассмотреть кратко устройство, принцип работы и основную причину выхода из строя штатного датчика.

Рис. 1. Принципиальная электрическая схема включения электродвигателя вентилятора от температурного датчика ТМ108 (фрагмент):

а — штатное включение; б — вариант включения с диодной защитой

 

На большинстве моделей отечественных автомобилей в качестве штатного используется температурный датчик типа ТМ108 (изделие 2103-3808800, впервые примененное на автомобиле ВАЗ-2103). Устанавливается датчик в систему охлаждения двигателя обычно на выходе водяного радиатора и реагирует поэтому на температуру жидкости после ее охлаждения. По принципу работы этот датчик представляет собой термоконтактный выключатель, содержащий биметаллические контакты, срабатывание которых отрегулировано (в процессе изготовления датчика) на определенные величины (пороги) по температуре. Фрагмент принципиальной схемы электрооборудования автомобиля, относящийся к электровентилятору, представлен на рис. 1.

Обычно термоконтакты SK1 датчика ТМ108 управляют включением электродвигателя (типа МЭ272) М1 вентилятора с помощью электромагнитного реле (типа 113.3747) с обмоткой К1 и нормально разомкнутой контактной группой К1.1 (рис. 1, а). Работа схемы происходит автоматически. Как только температура омывающей датчик жидкости повысится настолько, что контакты SK1 замкнутся, через обмотку К1 потечет ток, группа К1. 1 контактов также замкнется и включит электродвигатель М1 вентилятора. В результате работы последнего температура охлаждающей жидкости начнет уменьшаться. После ее некоторого снижения контакты SK1 разомкнутся и электродвигатель М1 выключится. Далее этот процесс периодически повторяется.

Поскольку контакты SK1 датчика непосредственно коммутируют обмотку К1 реле, они подвержены воздействию довольно сильного искрения (возникающего от э.д.с. самоиндукции обмотки К1). Из-за этого происходит электроэрозионный износ контактов SK1, способствующий их отказу. Поскольку эти контакты расположены внутри герметизированного корпуса датчика, доступ к ним для ремонта невозможен. В качестве профилактической меры, уменьшающей электроэрозионный износ, может быть рекомендована защита контактов SK1 с помощью полупроводникового диода VD1 (рис. 1, б). При этом искрение на них уменьшается, что способствует продлению времени исправной работы датчика.

Если же датчик вышел из строя, то лучше всего вовсе отказаться от его использования. Впрочем, удалять неисправный датчик не рекомендуем, так как он сильно «прикипает» к своему посадочному месту. В результате ремонтных работ возможно повреждение патрубка водяного радиатора, что обычно приводит к необходимости замены всего радиатора в сборе.

Значительно лучше поступить иначе: произвести замену вышедшего из строя датчика ТМ108 несложным, самостоятельно изготовленным электронным устройством, работающим совместно с датчиком ТМ100-А указателя температуры системы охлаждения двигателя.

Датчик ТМ100-А выполнен на основе полупроводникового прибора — терморезистора, не содержащего каких-либо подвижных контактов. Благодаря этому надежность и долгосрочность датчика ТМ100-А значительно выше, чем датчика TWI108. Кроме того, на двигателе он расположен обычно на головке блока, в связи с чем отображает более достоверную информацию о температуре в системе охлаждения. Все это создает благоприятные предпосылки использования датчика ТМ100-А не только для работы указателя температуры, но и для управления электровентилятором.

Вместе с тем формируемый датчиком ТМ100-А электрический сигнал мало подходит для указанной цели. Основное препятствие состоит в том, что зависимость его сопротивления от температуры, как и у каждого терморезисторного датчика, аналоговая, в то время как для управления электровентилятором требуется скачкообразно изменяющийся выходной сигнал. Кроме того, этот датчик питается не-стабилизированным напряжением бортовой сети, поэтому снимаемое с датчика ТМ100-А выходное напряжение также нестабильно.

 

Рис. 2. Принципиальная электрическая схема устройства включения электродвигателя вентилятора от датчика ТМ100-А указателя температуры системы охлаждения двигателя

 

Преодолеть перечисленные технические препятствия позволяет несложное электронное устройство (рекомендуемое к самостоятельному изготовлению), принципиальная электрическая схема которого представлена на рис. 2. В совокупности с бесконтактным датчиком данное устройство, не содержащее подвижных контактов, при хорошем качестве изготовления отличается высокими показателями надежности и долговечности.

В основе устройства распространенная аналоговая микросхема ОА1 (К140УД1А), выполняющая роль компаратора напряжения. Сигнал с датчика ТМ100-А поступает на вход устройства, далее через резистор R1 на делитель напряжения борт-сети, собранный на резисторах R2, R3, R4. Общая точка резисторов R3 и R4 связана с неинвертирующим входом (вывод 10) микросхемы DA1. Таким образом, сигнал датчика ТМ100-А воздействует именно на этот вход микросхемы DA1. Другой (инвертирующий) ее вход (вывод 9) соединен со вторым делителем напряжения бортсети, выполненным на резисторах R5, R6, R7.

Этот делитель нужен для задания порогового значения напряжения (уставки), при котором компаратор переключается.

Цепь, состоящая из последовательно соединенных резистора R9 и диода VD1, служит для того, чтобы включение электровентилятора происходило при более высокой температуре, чем та, при которой происходит его выключение. Тем самым задается определенный гистерезис срабатывания устройства.

Конденсаторы С1 и С2 установлены для защиты устройства от импульсных помех от бортовой сети. Питание микросхемы DA1 (выводы 7 и 1) осуществляется от параметрического стабилизатора, выполненного на резисторе R10 и стабилитроне VD2.

Сигнал компаратора напряжения с выхода микросхемы DA1 (вывод 5) поступает на двухкаскадный усилитель мощности, собранный на транзисторах VT1, VT2 и резисторах R8, R11. Коллекторный вывод транзистора VT2 является выходом устройства. К нему подключается обмотка реле (как штатный элемент электрооборудования автомобиля она на схеме не показана), управляющего работой электродвигателя вентилятора. Таким образом, переход коллектор-эмиттер транзистора VT2 в этой схеме выполняет роль контактов температурного датчика ТМ108. Диод VD3 служит для защиты этого перехода от э.д.с. самоиндукции обмотки упомянутого реле.

Работает устройство следующим образом.

Пока жидкость в системе охлаждения двигателя прогрета слабо, напряжение на датчике ТМ100-А велико (оно будет близко к напряжению бортсети автомобиля). Поскольку это напряжение подается непосредственно на вход устройства, величина напряжения на неинвертирующем входе микросхемы DA1 превышает уровень напряжения, подведенного к ее инвертирующему входу. При этом на ее выходе будет высокий уровень сигнала. Поэтому транзистор VT1 будет открыт, а транзистор VT2 — закрыт. Это состояние устройства схемы соответствует разомкнутым контактам датчика ТМ108.

После того как температура охлаждающей жидкости повысится достаточно сильно, уровень напряжения на неинвертирующем входе ДА1 станет ниже, чем на инвертирующем. В результате этого уровень сигнала на выходе микросхемы DA1 станет низким. При этом транзистор VT1 закроется, а транзистор VT2 откроется. Это переключение устройства будет равносильно замыканию контактов датчика ТМ108.

Отметим, что пока устройство находится в первом состоянии, диод VD1 закрыт и цепь R9VD1 практически ни на что не влияет. Однако сразу же после переключения компаратора диод VD1 открывается, поэтому уровень напряжения на неинвертирующем входе микросхемы DA1 еще больше снижается. Тем самым устраняется возможность преждевременного возврата устройства в прежнее состояние до тех пор, пока температура в системе охлаждения не будет несколько снижена в связи с работой электровентилятора.

Обратим внимание на два существенных достоинства рассматриваемого устройства.

1-е достоинство. Независимость его работы от колебаний напряжения в бортовой сети. Связано это с тем, что оба делителя, сигналы с которых подаются на инвертирующий и неинвертирующий входы микросхемы, питаются одновременно и непосредственно от одной и той же точки бортовой сети автомобиля.

2-е достоинство. Возможность изменения температур включения — выключения, что позволяет осуществить регулирование работы электровентилятора в оптимальном диапазоне температур двигателя автомобиля. Для этого нужно лишь подобрать номиналы резисторов R6 и R9. В дальнейшем поддержание требуемой температуры охлаждающей жидкости будет производиться автоматически и с достаточной точностью.

При подборе номинала резистора R6 следует иметь в виду следующее: чем его сопротивление больше, тем при более высокой температуре будет срабатывать устройство,и наоборот.

При эксплуатации температура охлаждающей жидкости в двигателе, снабженном закрытой системой охлаждения, не должна достигать 110...115°С. В противном случае антифриз в системе начнет кипеть, что, конечно, недопустимо.

На практике номинал резистора R6 желательно подобрать так, чтобы температура антифриза максимально возможно поднималась, но его кипения не происходило. Важно, что экономические показатели двигателя (мощность, расход топлива) наиболее благоприятны при температуре воды в системе охлаждения в пределах 8О...9О°С Как раз к такой настройке и надо стремиться.

А вот увеличение сопротивления резистора R9 приведет к тому, что разница между порогами срабатывания (включения и выключения) электровентилятора по температуре станет уменьшаться. Вплоть до наступления беспорядочного его включения и выключения. Напротив, излишне уменьшив сопротивление резистора R7, можно прийти к тому нежелательному случаю, при котором раз включившийся вентилятор уже не будет выключаться. (Электровентилятору попросту не хватит «сил» охладить двигатель до такой температуры, которую мы по ошибке задали!) Разумеется, эти крайности в настройке недопустимы.

Наблюдают за срабатыванием устройства с помощью контрольной лампы, установленной в салоне автомобиля и временно подключенной параллельно электровентилятору. Горение лампы, естественно, свидетельствует о включенном состоянии электровентилятора.

Чтобы ускорить и упростить настройку схемы, вместо постоянного резистора R6 (а при необходимости и взамен резистора R9) целесообразно временно установить переменный резистор несколько большего номинала. После того как положение его движка будет подобрано, с помощью омметра замеряют его сопротивление и подбирают постоянный резистор с наиболее близким номиналом. Найденный таким образом резистор впаивается в схему.

Заметим, что в целом приведенная электрическая схема устройства почти ничем не отличается от соответствующего контура, входящего в блок управления ЭПХХ 1102.3761 грузовых автомобилей ЗИЛ-130, надежная работа которого подтверждена многолетней практикой. Собрать это устройство можно в любой подходящей коробке. В авторском варианте она помещена в корпус от вышедшего из строя блока управления (четырехконтактного) ЭПХХ 25.3761, применяемого на автомобилях «Жигули» и «Москвич».

 

 

Ж. «Сделай Сам» N 6 1993

OCR Pirat

 

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-09-19 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: