Общие сведения о топливе, его важнейшие характеристики.




Вопрос №20

Основные понятия о чугуне, свойства чугунов, классификация. Дать определение, какие чугуны называются доэвтектическими, эвтектическими и заэвтектическими. Опишите их структурные составляющие.

Чугун – сплав железа с углеродом, в котором углерода больше 2.14%

Серые чугуны — это литейный чугун. Серый чугун поступает в произ­водство в виде отливок. Серый чугун является дешевым конструкцион­ным материалом. Он обладает хорошими литейными свойствами, хоро­шо обрабатывается резанием, сопротивляется износу, обладает способ­ностью рассеивать колебания при вибрационных и переменных на­грузках. Свойство гасить вибрации называется демпфирующей способ­ностью. Демпфирующая способность чугуна в 2—4 раза выше, чем ста­ли. Высокая демпфирующая способность и износостойкость обуслови­ли применение чугуна для изготовления станин различного оборудова­ния, коленчатых и распределительных валов тракторных и автомо­бильных двигателей и др.

Механические свойства серых чугунов зависят от метал­лической основы, а также формы и размеров включений графита. Наиболее прочными являются серые чугуны на пер­литной основе, а наиболее плас­тичными — серые чугуны на ферритной основе. Поскольку графит имеет очень малую проч­ность и не имеет связи с метал­лической основой чугуна, поло­сти, занятые графитом, можно рассматривать как пустоты, над­резы или трещины в металличе­ской основе чугуна, которые значительно снижают его проч­ность и пластичность.

Высокопрочный чугун. Механические свойства высокопрочного чугуна позволяют приме­нять его для изготовления деталей машин, работающих в тяжелых ус­ловиях, вместо поковок или отливок из стали. Из высокопрочного чугуна изготовляют детали прокатных станов, кузнечно-прессового оборудования, паровых турбин (лопатки направляющего аппарата), тракторов, автомобилей (коленчатые валы, поршни) и др.

Ковкий чугун. Ковкий чугун — условное название более пластичного чугуна по сравнению с серым. Ковкий чугун никогда не куют. Отливки из ковкого чугуна получают длительным отжигом отливок из белого чугуна с перлитно-цементитной структурой. Толщина стенок отливки не должна превышать 40—50 мм. При отжиге цементит белого чугуна распа­дается с образованием графита хлопьевидной формы. У отливок с толщиной стенок более 50 мм при отжиге будет образовываться нежелательный пластинчатый графит.

Доэвтектические чугуны (2-4,3%) имеют структуру, состоящую из перлита, вторичного цементита и ледебурита. Чем больше углерода в доэвтектическом чугуне, тем больше содержание ледебурита.

Эвтектический чугун (4,3%) состоит только из ледебурита.

Заэвтектический чугу (больше 4,3%) состоит из крупных пластин первичного цементита и ледебурита. Чем больше углерода в заэвтектическом чугуне, тем больше он содержит первичного цементита.

Вопрос №43

Сущность газовой сварки металлов. Материалы и оборудование для газовой сварки металлов. Строение кислородно-ацетиленового пламени. Применение газовой сварки.

Сущность газовой сварки.

При газопламенной обработке металлов в качестве источника теплоты используется газовое пламя ­– пламя горючего газа, сжигаемого для этой цели в специальных горелках.

В качестве горючих газов используют ацетилен, водород, природные газы, нефтяной газ, пары бензина, керосина и др. Наиболее высокую температуру по сравнению с пламенем других газов имеет ацетиленокислородное пламя, поэтому оно нашло наибольшее применение.

Газовая сварка – это сварка плавлением, при которой кромки соединяемых частей нагревают пламенем газов, сжигаемых на выходе горелки. Газовой сваркой соединяют стали малой толщины, чугуны, цветные металлы, сплавы.

Применяемые материалы для газовой сварки и резки:

1) горючие газы - ацетилен, водород, метан, пропан-бутан, природный, нефтяной, коксовый, сланцевый и другие и другие газы, а также пары бензина и керосина.

Ацетилен получил наибольшее применение, т.к. он по сравнению с другими горючими газами даёт самую высокую температуру при сгорании (3150°С) и обеспечивает концентрированный нагрев. Это бесцветный газ с резким чесночным запахом. Он легче воздуха, смесь ацетилена с воздухом и кислородом взрывоопасна. Ацетилен получают из карбида кальция и реже из природного газа. Получают карбид кальция в электропечах сплавлением кокса с негашёной известью;

2) технический кислород в промышленности получают из атмосферного воздуха. Его выпускают 3-х сортов: 1-й – чистота не менее 99,7 %; 2-й – не менее 99,5 %; 3-й – не менее 99,2 %. Чистота кислорода имеет большое значение, особенно при кислородной резке. Чем меньше содержится в кислороде газовых примесей, тем выше скорость резания, чище кромки и меньше расход кислорода;

3) присадочный металл предназначен для введения в сварочную ванну в дополнение к расплавленному основному металлу. Присадочный металл может быть в виде проволоки, прутков или полосок, нарезаемых из металла того же или близкого химического состава, что и свариваемый металл;

4) флюсы – это неметаллы, которые вводят в сварочную ванну, где они расплавляются и образуют с окислами легкоплавкие шлаки, всплывающие на поверхность сварочной ванны.

Они предохраняют шов от воздействия атмосферного воздуха. В качестве флюсов используют буру Na2B2O7 и борную кислоту H3BO3.

Ацетилено-кислородное пламя обладает наиболее высокой температурой по сравнению с пламенем любого другого газа. Поэтому оно нашло самое широкое распространение.

Для полного сгорания одного объема ацетилена требуется два с половиной объема кислорода; один объем поступает из кислородного баллона и полтора объема — из воздуха.

Распределение температуры по оси ацетилено-кислородного пламени показано на рис. 1, а. Максимальная температура пламени, достигающая 3050—3150 °С, находится на расстоянии 2— 6 мм от конца ядра. При увеличении расхода ацетилена и кислорода это расстояние приближается к максимальному. Изменение длины ядра в зависимости от расхода газов видно из рис. 1, б.

Схема и графики изменения температур метан-кислородного и пропан-бутан-кислородного пламени даны на рис. 1, в.

 

 

 

Газовая сварка применяется в нашей стране с 1906 г. До 1960 г. для сварки металлов применяли лишь ацетилено-кислородное пламя. Позднее, когда ацетилен стал дефицитным газом в связи с использованием его для получения резины и пластических материалов, кислородное пламя стали заменять другими видами пламени. Чаще всего используется пропан-бутановая смесь или пары горючих жидкостей (керосина и бензина). Эти горючие образуют пламя с температурой всего 2000—2400 °С вместо 3150 °С при сгорании ацетилена, что затрудняет их широкое применение.

Любое газовое пламя и особенно с низкой температурой обладает малой концентрацией тепла по сравнению с концентрацией тепла в сварочной дуге. Поэтому газовая сварка по сравнению с дуговой выполняется при низких скоростях нагрева и охлаждения металла, что приводит к укрупнению зерен околошовного металла, низкой прочности сварного соединения, большим деформациям сварного изделия. Кроме того, стоимость газовой сварки стальных листов толщиной 2 мм выше стоимости дуговой сварки.

Производительность газовой сварки изделий из стали толщиной до 1,5 мм в 1,5 раза выше по сравнению с дуговой сваркой покрытыми электродами; при толщинах выше 2 мм уступает ей. Поэтому газовая сварка во многих областях вытесняется электрической (контактной, дуговой и др.).

Газовая сварка применяется при ремонте литых изделий из чугуна и цветных металлов, исправлении дефектного литья, при монтаже сантехнических узлов, наплавке, сварке легкоплавких металлов и т. п. Газовое пламя удобно применять при горячей пайке.

По прочности, пластичности и вязкости металла шва и сварного соединения газовая сварка уступает дуговой независимо от толщины свариваемого металла.

 

 

 

Вопрос №66

Общие сведения о топливе, его классификация, состав и свойства.

Общие сведения о топливе, его важнейшие характеристики.

Топливом называют горючие органические вещества, являющиеся источником тепловой энергии и сырьем для химической, металлургической и других отраслей промышленности.

В результате химической переработки различных топлив получают большое количество углеводородного сырья для производства пластических масс, химических волокон, синтетических каучуков, лаков, красителей, растворителей и т.п. Одним из важнейших видов химического сырья является природный газ, содержащий до 98% метана. Древесина является источником получения целлюлозы, этилового спирта, уксусной кислоты и других продуктов. Из сланцев и торфа производят горючие газы, сырье для производства масел, моторных топлив, высокомолекулярных соединений и т.п.

Все топлива по агрегатному состоянию делятся на твердые, жидкие и газообразные; по происхождению – на естественные и искусственные.

По происхождению топливо бывает естественным и искусственным, т. е. полученным в результате переработки естественного топлива или в качестве отходов различных технологических процессов (например, доменный газ). Горючие полезные ископаемые являются естественным видом топлива.

Классификация видов топлива

Агрегатное состояние топлива Топливо
природное естественное искусственное
Твердое Древесина, торф, уголь, сланцы Кокс, полукокс, древесный уголь
Жидкое Нефть Бензин, керосин, мазут и др.
Газообразное Природный газ, попутные газы. Коксовый газ, генераторные газы, газы нефтепереработки.

 

В настоящее время основным источником получения внутренней энергии служит нефть. В топливно-энергетических балансах промышленно развитых стран доля нефти составляет 47%, газа – 17%, угля – 30%). Остальные 6% на все прочие источники энергии. Преимущество нефти и газа – их экономичность. Сжигание топлива обеспечивает энергией тепловые электростанции, промышленные предприятия, транспорт, быт.

 

Развитие угольной и ядерной энергетики даст в будущем возможность прекратить потребление нефти и природного газа в энергетических целях и полностью передать эти виды топлива в сферу промышленности как сырье для химической промышленности, а также для синтеза белков и жиров.

Топливо состоит из горючей и негорючей частей. Горючая часть топлива представляет собой совокупность различных органических соединений, в которые входят углерод, водород, кислород, азот, сера. Негорючая часть (балласт) состоит из минеральных примесей включающих золу и влагу.

Углерод С - основная горючая часть топлива. С увеличением его содержания тепловая ценность топлива повышается. Для различных топлив содержание углерода составляет от 50 до 97 %.

Водород Н является второй по значимости горючей составляющей топлива. Содержание водорода в топливе достигает 25%. Однако, при сгорании водорода выделяется в четыре раза больше теплоты, чем при сгорании углерода.

Кислород О, входящий в состав топлива, не горит и не выделяет теплоты, поэтому является внутренним балластом топлива. Его содержание в зависимости от вида топлива колеблется от 0,5 до 43 %.

Азот N не горит и является внутренним балластом топлива. Содержание его в жидком и твердом видах топлива не велико и составляет 0,5 - 1,5%.

Сера S, при сгорании которой выделяется определенное количество теплоты, является весьма нежелательной составной частью топлива, так как продукты его сгорания - сернистый SO2 и серный SО3 ангидриды вызывают сильную газовую или жидкостную коррозию металлических поверхностей. Содержание серы твердом топливе до 8 %, а в нефти от 0,1 до 4 %.

Зола А представляет собой негорючий твердый компонент, количество которого определяют после полного сгорания топлива. Она является нежелательной и даже вредной примесью, так как в ее присутствии усиливаются абразивные износы, усложняется эксплуатация различных агрегатов. Топливо с высоким содержанием золы имеет низкую теплоту сгорания и воспламенения.

Влага W является весьма нежелательной примесью топлива, так как, отбирая часть теплоты на испарение, снижает теплоту и температуру сгорания топлива, усложняет эксплуатацию установок (особенно в зимнее время), способствует коррозии.

Минеральные примеси (золу и влагу) принято подразделять на внешние и внутренние. Первые попадают в топливо из окружающей среды при его добыче, транспортировке или хранений, а вторые входят в его химический состав.

Топливо, которое поступает к потребителю в естественном состоянии, и содержит, кроме горючей части, золу и влагу, называется рабочим. Для определения сухой массы топлива его высушивают при температуре 105°С для удаления влаги.

Состав газообразных топлив весьма разнообразен: горючая часть его включает водород Н, окись углерода СО, метан СН4 и другие газообразные углеводороды (CnHm) с числом углеводородных атомов до 4 включительно.

 

 

Вопрос №75

Лакокрасочные материалы, их виды, классификация, назначение, состав и методы определения качественных параметров. Сырье и полуфабрикаты для приготовления красок и эмалей. Правила упаковки, хранения и учет.

Лакокрасочные материалы можно классифицировать по виду, химическому составу, назначению и ряду других признаков (рис.1).

Рисунок 1

Классификация лакокрасочных материалов

По составу они подразделяются на непигментированные — лаки и олифы, и пигментированные краски, эмали, а также вспомогательные составы — грунтовки, шпатлевки, цветные лаки, растворители, разбавители и смывки. Краски можно подразделить на густотертые и жидкотертые, то есть готовые к применению.

Видовой ассортимент ЛКМ включает в себя:

• олифы — продукты переработки растительных масел и масляных составов;

 

• лаки — растворы пленкообразующих веществ в растворителях;

• краски — суспензии красящего вещества в связующем. Связующим могут быть олифа, лак, клей, известь, латекс;

• эмали — суспензии пигментов в лаке. Позволяют получить более прочное, гладкое и блестящее покрытие;

• грунтовки — составы, обеспечивающие надежное сцепление красочных слоев и окрашиваемой поверхности;

• шпатлевки — пастообразные составы, применяемые для выравнивания поверхности и заполнения неровностей перед нанесением на них красок;

• растворители, разбавители, смывки и сиккативы. Используются для подготовки ЛКМ перед окрашиванием, ускорения высыхания.

В зависимости от типа пленкообразущего вещества лакокрасочные составы делятся на масляные, алкидные, нитроцеллюлозные и др. По условиям эксплуатации ЛКМ подразделяются на атмосферостойкие, ограниченно атмосферостойкие, водостойкие, термостойкие и т. п. По назначению выделяют ЛКМ строительные, автомобильные, промышленные, бытовые, мебельные, специальные и др.

Олифы. Один из основных непигментированных ЛКМ — олифу определяет как пленкообразующее вещество, представляющее собой продукты переработки растительных масел с введением сиккативов для ускорения высыхания.

В зависимости от исходного сырья и способа его переработки различают натуральные, полунатуральные, синтетические и искусственные олифы. По стандартной классификации олифы подразделяются на масляные; синтетические и композиционные.

Масляные олифы содержат полимеризованные или оксидированные высыхающие масла или их смеси и сиккативы.

Синтетические олифы представлены пентолями — продуктами этерификации полиолов ненасыщенными жирными кислотами, и алкидными олифами — растворами полиэфиров, модифицированных растительными маслами.

Композиционные олифы — это смесь продуктов переработки нефти, газа, сланцев, каменноугольных смол и побочных продуктов различных производств с препарированием растительными маслами.

Натуральные олифы готовят на основе высыхающих масел без добавления растворителя. Их получают путем термообработки масла при 120 — 160 °С с добавлением сиккатива.

Льняная олифа — жидкость коричневого или светло-коричневого цвета. Плотность ее — 0,936 — 0,950 г/см3. Пленка олифы достаточно плотная и эластичная.

Комбинированные олифы содержат до 30 % растворителя. Комбинированные олифы применяются главным образом как полуфабрикат для изготовления густотертых масляных красок. Композиционные олифы содержат до 45 % растворителя. Для их получения используют низкокачественные растительные масла.

Синтетические и искусственные олифы — это побочные продукты различных производств, способные при высыхании образовывать пленки. Как правило, это низкокачественные материалы, которые, однако, можно использовать для неответственных работ, пропитки пористых поверхностей, временной защиты и т.д.

Лаки. К этому виду непигментированных ЛКМ относят растворы пленкообразующих веществ в органических растворителях или в воде. При отверждении они образуют прозрачное однородное покрытие. Лаки на водной основе появились недавно. Это высокоэкологичные, пожаробезопасные, практически не пахнущие, но дорогостоящие материалы.

Обычно название лака определяется видом пленкообразующего вещества. Выпускаются масляно-смоляные, смоляные, эфироцеллюлозные, асфальтобитумные лаки.

Масляно-смоляные лаки выпускают двух марок: ПФ-283 и ГФ-166. По цвету они могут быть светло-коричневыми с литерой «С» и темно-коричневыми с литерой «Т». Применяют их для покрытия по дереву и по масляной краске внутри помещения (4С и 4Т) и снаружи здания (5С и 5Т).

Смоляные лаки можно подразделить на три группы: на основе природных смол; на основе термопластичных синтетических смол; на основе термореактивных синтетических смол.

Лаки на основе природных смол выпускаются и применяются ограниченно. Канифольный лак — раствор канифоли в скипидаре — бывает безмасляным и маслосодержащим, применяется для внутренних работ по дереву и металлу, не подвергающимся воздействию повышенных температур и влаги. Деревянные изделия лакируют спиртовыми лаками. В последние годы широкое распространение получили водоразбавляемые лаки на акрилатной основе. Покрытия отличаются высокой гигиеничностью. Отсутствие запаха и органических растворителей делает водоразбавляемые лаки экологически полноценными. Они могут быть применены как для наружных, так и для внутренних работ по древесине, штукатурке и эластичным материалам, например по коже.

Эфироцеллюлозные лаки — это растворы нитроцеллюлозы с некоторыми смолами и пластификаторами в летучих растворителях. Они просты в применении, быстро высыхают (15 — 60 мин), дают водостойкие, прочные и твердые пленки, легко полируются до зеркального блеска.

Асфальтобитумные лаки получают растворением искусственных битумов или их смесей с маслами в скипидаре, уайт-спирите и других органических растворителях.

К пигментированным ЛКМ относятся краски. Краска — это суспензия пигментов или их смеси с наполнителями в олифе, эмульсии, латексе или другом пленкообразующем веществе, дающая после высыхания непрозрачную цветную однородную пленку. Краски по природе пленкообразователя подразделяют на масляные, эмали, водно-дисперсионные, клеевые.

Масляные краски — это суспензии пигментов в олифах типа оксоль. По степени готовности к использованию различают густотертые и готовые к употреблению краски.

Эмали. Вид ЛКМ, включающий суспензии пигментов или их смесей с наполнителями в лаках, образующие после высыхания непрозрачные твердые покрытия, обладающие защитными, декоративными или специальными техническими свойствами. Покрытия могут иметь различную фактуру и быть глянцевыми, матовыми, муаровыми, а также отличаться цветом и блеском.

Водно-дисперсионные (латексные) краски — суспензии пигментов в водных дисперсиях пленкообразователей. Состав этих красок включает 16 компонентов и более. Основные из них:

• пленкообразующие — 50%-ные водные дисперсии таких полимеров, как полиакрилаты, поливинилацетат и его производные, сополимеры стирола и бутадиена. Дисперсия представляет собой мельчайшие капельки полимера, равномерно распределенные в воде. Обычно это продукты эмульсионной полимеризации;

• эмульгатор — ПАВ — обеспечивает устойчивость дисперсии пленкообразователя. Обычно это соли синтетических жирных кислот;

• диспергатор улучшает смачиваемость пигмента. Это фосфаты;

• загуститель, повышает вязкость краски. Это поливиниловый спирт, простые эфиры целлюлозы;

• антивспениватели, предотвращают пенообразование при изготовлении и нанесении красок. Это гидрофобы — уайт-спирит, скипидар;

• антисептики, повышают устойчивость красок к плесени и бактериям;

• антифризы, или пластификаторы, повышают морозостойкость красок и покрытий на их основе;

• пигменты, ассортимент их ограничен, так как должны быть хорошая смачиваемость водой и в то же время минимальная растворимость. Чаще всего изготовляют краски белые и светлых тонов.

Водно-дисперсионные краски применяются для создания декоративных и защитных покрытий.

Клеевые краски представляют собой суспензии пигментов в водных растворах пленкообразователей — клеев. Клеевые краски готовят, смешивая водный раствор пленкообразователя, то есть клея, с пигментной пастой. Применяются для отделочных работ внутри помещений. Клеевые краски готовят непосредственно перед употреблением. Достоинства клеевых красок заключаются в том, что они нетоксичны; гигиеничны, так как покрытия газо- и паропроницаемы; покрытия имеют хорошие декоративные свойства.

Растворители Обеспечивают возможность нанесения ЛКМ различными способами на подложку. При использовании для корректировки технологических свойств (вязкости) их также называют разбавителями.

Требования качеству. Государственные стандарты регламентируют показатели качества для жидких ЛКМ – химические, физико-химические, малярно-технические и покрытий на основе ЛКМ – декоративные, физико-механические, защитные, малярно-технические, электроизоляционные, химические

Грунтовка - это суспензия пигментов или смеси пигментов и наполнителей в связующем веществе. После высыхания создает однородную непрозрачную пленку с хорошей адгезией к подложке. Грунтовки образуют нижние слои покрытий, способствуя надежному сцеплению верхних слоев покрытия с окрашиваемой поверхностью.

Шпатлевками называют составы, применяемые для выравнивания поверхностей, которые подлежат окраске. Для их приготовления применяется хозяйственное мыло, мел. Мучной клей, столярный, животный, лаки, просеянный гипс, олифы.

Свойства лакокрасочных материалов

Свойства лакокрасочных материалов (ЛКМ) можно разделить на физико-химические, химические и малярно-технические.

1. Физико-химические свойства ЛКМ подразумевают вязкость, укрывистость, плотность, скорость отвердевания (высыхания) пленки.

2. К химическим свойствам ЛКМ относятся процентное соотношение составных веществ, количество наполнителей, пленкообразующих, водорастворимых солей, растворителей и т.д.

3. Малярно-технические свойства характеризуют удобство работы с ЛКМ, т.е. стекаемость, перелив, наносимость, степень перетира, плотность.

Свойства лакокрасочных покрытий

Лакокрасочное покрытие – пленка, образующаяся вследствии высыхания ЛКМ. Такие пленки тоже должны отвечать определенным требованиям и обладать определенными свойствами:

1. декоративными (внешний вид, цвет лакокрасочного покрытия, блеск);

2. химическими;

3. физико-химическими;

4. защитными;

5. малярно-техническими (хорошо поддаваться шлифовке, полировке, зачистке);

6. электроизоляционными;

7. специальные ЛКМ должны обладать дополнительными специфическими свойствами.

Лакокрасочные материалы широко применяются для защиты металлов от коррозии.

Состав лакокрасочных материалов

Основными компонентами лакокрасочных материалов (ЛКМ) являются пленкообразующие, пигменты, наполнители, пластификаторы, растворители, сиккативы, добавки.

Пленкообразующие лакокрасочных материалов – многокомпонентная система, после нанесения которой на поверхность в результате физико-химических процессов образуется сплошная, прочно сцепленная с основой пленка.

Пигменты – это окрашенные порошки высокой дисперсии. Вода, пленкообразующие вещества их не растворяют. Пигменты в основном применяют в декоративных целях, для придания краскам, грунтовкам, а также эмалям цвета и блеска. Но кроме того пигменты отличаются некоторыми полезными свойствами, которые влияют на конечный продукт: светостойкость, химическая и атмосферостойкость, смачиваемость, дисперсность, маслостойкость, укрывистость, кристаллическая структура, способность взаимодействовать с пленкообразующими.

По своему происхождению пигменты лакокрасочных материалов (ЛКМ) можно разделить на синтетические и природные, а по химическому составу – на органические и неорганические.

Наполнитель – это нерастворимое в дисперсионных средах сухое неорганическое вещество. Применяют как добавоки к пигментам для их экономии и снижения стоимости лакокрасочных материалов (ЛКМ). Наполнители вводят только в непрозрачные лакокрасочные материалы. При правильном подборе системы пигмент – наполнитель можно улучшить свойства ЛКМ. Придать лакокрасочным материалам определенную вязкость, улучшить разливаемость, предотвратить оседание пигментов на дно резервуара, повысить прочность, атмосферостойкость готового покрытия.

Пластификаторы - практически нелетучие органические вещества, которые вводятся в пленкообразующее для придания высохшим ЛКМ эластичности. В качестве пластификаторов используют фталаты, фосфаты, касторовое масло, совол, себацинаты и т.д.

Растворители – летучая органическая жидкость или смесь жидкостей, которая применяется для растворения пленкообразующих, придания ЛКМ нужной консистенции. К ним относятся спирты, эфиры, кетоны, углеводороды.

Сиккативы – мыльное соединение некоторых металлов в растворителях или соединения в виде оксидов. Сиккативы применяют для ускорения процесса высыхания лакокрасочного материала. К сиккативам относятся кобальтовые, марганцевые, свинцовые, линолеаты, нафтенаты, резинаты и др.

Добавки – вещества для придания определенных свойств лакокрасочным материалам. Добавками принято считать различные отвердители, эмульгаторы, стабилизаторы, ускорители, инициаторы и многое другое.

Классификация лакокрасочных материалов

Все лакокрасочные материалы подразделяются на основные, промежуточные и прочие.

Основные – лаки, эмали, краски, шпаклевки, грунтовки.

Промежуточные – растворителя, разбавители, смолы, их растворы, сиккативы, олифы.

Прочие – подсобные, вспомогательные материалы.

По назначению (условиям эксплуатации) ЛКМ различают:

1. атмосферостойкие;

2. ограниченно атмосферостойкие;

3. защитные или консервационные;

4. водостойкие (4/1 – стойкие в пресной воде, 4/2 –морской воде);

5. специальные;

6. маслобензостойкие лакокрасочные материалы;

7. стойкие при воздействии химических веществ;

8. термостойкие ЛКМ (эксплуатирующиеся при температуре от 50 до 500оС);

9. электроизоляционные;

10. грунтовки;

11. шпаклевки.

Образованные лакокрасочные покрытия принято разделять по внешнему виду на:

- высокоглянцевые (ВГ);

- глянцевые (Г);

- полуглянцевые (ПГ);

- полуматовые (ПМ);

- матовые (М);

- глубокоматовые (ГМ).

По прибору ФБ – 2 определяется степень блеска покрытия, записывается в процентах. Степени блеска покрытий: ВГ – более 60%, Г – 50-59%, ПГ – 37-49%, ПМ – 20-36%, М – 4-19%, ГМ – не больше 3%.

Кроме вышеописанных классификаций лакокрасочные материалы классифицируются еще по некоторым признакам:

- по способу нанесения ЛКМ;

- по условиям сушки (холодная, горячая);

- по декоративным свойствам ЛКМ;

- по назначению ЛКМ;

- по эксплуатации при определенных условиях;

- по блеску;

- по последовательности нанесения ЛКМ.

Маркировка ЛКМ

У каждого лакокрасочного материала (ЛКМ), будь то лак, краска или шпаклевка, есть свое «имя» и обозначение. Оно состоит из слов, букв, а также цифр. Обозначение пигментированных ЛКМ состоит из пяти групп знаков, на непигментированных (лаков) – четырех.

1 группа. При записи сначала указывается вид ЛКМ – лак, краска, шпаклевка, эмаль или грунтовка. Если в состав краски входит лишь один пигмент, то вместо слова «краска» записывают наименование пигмента (белила цинковые, охра).

2 группа. Далее краткое обозначение основы (две буквы) – указывается тип использованного пленкообразующего вещества. В случае, если в состав ЛКМ входит смесь пленкообразующих веществ – при маркировке указывают основной.

3 группа. После буквенного обозначения основы указывают условия эксплуатации данного ЛКМ (цифра).

4 группа. У каждого лакокрасочного материала (ЛКМ) есть свой порядковый номер, присвоенный ему при изготовлении. Он может состоять из одной, двух или трех цифр.

5 группа. Указывается цвет ЛКМ.

Для водоэмульсионных ЛКМ, не содержащих летучего растворителя, порошковых, водоразбавляемых между первой и второй группами знаков ставится обозначение: В – водоразбавляемые, Э – водоэмульсионные, П – порошковые краски, ОД – органодисперсионные, Б – не содержащих летучего растворителя.

Между второй и третьей группой знаков всегда ставится тире.

Для алкидных и масляных красок вместо присвоенного при изготовлении порядкового номера ставят цифру, обозначающую вид олифы: 1 – натуральная, 2 – «Оксоль» олифа, 3 – олифа глифталевая, 4 – олифа пентафталевая, 5 – комбинированная.

Иногда для уточнения специфических свойств ЛКМ после порядкового номера ставят обозначения: ПМ – полуматовые, ПГ – пониженной горючести, Г – глянцевые.

 

 

Вопрос №81

Расшифровать марки легированных сталей: 60С2; 9ХС; Р9, указать их примерное применение.

60С2 - Сталь конструкционная рессорно-пружинная.

Применение - тяжелонагруженные пружины, торсионные валы, пружинные кольца, цанги, фрикционные диски, шайбы пружинные.

9ХС - Сталь инструментальная легированная.

Применение - сверла, развертки, метчики, плашки, гребенки, фрезы, машинные штампели, клейма для холодных работ. Ответственные детали, материал которых должен обладать повышенной износостойкостью, усталостной прочностью при изгибе, кручении, контактном нагружении, а также упругими свойствами.

Р9 - Сталь инструментальная быстрорежущая.

Применение - для изготовления резцов, работающих на высоких и средних скоростях резания, применяется быстрорежущая сталь марок Р9 и Р18. Резцы из быстрорежущей стали, как правило, изготовляются комбинированными с приваренными пластинками, державки из углеродистой, а пластинки из быстрорежущей стали.

 

Литература

1. Козлов, Ю.С. Материаловедение / Ю.С. Козлов. – Москва: АГАР, 1999. – 180 с.

2. Костяев, П.С. Промышленные материалы и топливо на железнодорожном транспорте: учебник для техникумов ж.-д. трансп. / П.С. Костяев, Б.В. Захаров. – Москва: Транспорт, 1986. – 239 с.

3. Материаловедение и технология конструкционных материалов для железнодорожной техники: учебник для вузов ж.-д. трансп. / Н.Н. Воронин, Д.Г. Евсеев, В.В. Засыпкин [и др.]; под общ. ред. Н.Н. Воронина. – Москва: Маршрут, 2004. – 456 с.

4. Мурзин, Л.Г. Топливо, смазка, вода: учебник для техникумов и учеб. пособ. для техн. школ / Л.Г. Мурзин, В.М. Гончаров. – 5-е изд., перераб. и доп. – Москва, Транспорт, 1981. – 253 с.

5. Машиностроительные материалы: краткий справочник / В.М. Раскатов, В.С. Чуенков, Н.Ф. Бессонова, Д.А. Вейс; под общ. ред. В.М. Расктова – Москва: Машиностроение, 1980. – 511 с.

6. Никулин В.Н. Электроматериаловедение/ В.Н. Никулин – Москва: Высшая школа, 1989. – 192 с.

7. Никифоров, В.М. Технология металлов и других конструкционных материалов /В.М. Никифоров. – 8-е изд., перераб. и доп. – Санкт-Петербург: Политехника, 2003. – 381 с. ил. 8. Электротехнические и конструкционные материалы: учеб. пособие для студ. сред. проф. Образования / В.Н. Бородулин, А.С. Воробьев, В.М. Матюнин [и др.]; под. ред. В.А. Филикова. – 5-е изд. стер. – Москва: Академия, 2009. – 280 с.

9. Цуркан, И.Г. Смазочные и защитные материалы: учебник для техникумов ж.-д.трансп. / И.Г. Цуркан, В.П. Кузнецов, А.А. Гвирцман. – 2-е изд., перераб. и доп. – Москва: Транспорт, 1988. – 167 с.

10. Журавлева Л.В. Электроматериаловедение: учебник для нач. проф. образования / Л.В. Журавлева. – 5-е изд., стер. – Москва: Издательский центр «Академия», 2008. – 352 с. 11. Карпицкий, В.Р. Общий курс слесарного дела / В.Р. Карпицкий. – Минск: Новое знание, 2006. – 399 с. 12. Меркурьев, Г.Д. Смазочные материалы на железнодорожном транспорте: спарвочник. / Г.Д. Меркурьев, Л.С. Елисеев. – Москва: Транспорт, 1985. – 255 с. 13. Самохоцкий, А.И. Лабораторные работы по металловедению и термической обработке металлов: учеб. пособ. для машиностроительных техникумов / А.И. Самохоцкий, М.Н. Кунявский. – 3-е изд., перераб. и доп. – Москва: Машиностроение, 1981. – 174 с. 14. Песок для песочниц локомотивов: ТУ МПС 1968.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-01-11 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: