История развития науки о полимерах
Выполнила студентка 4 курса 41 группы Факультета естествознания
Матиева Дилрабо Чарыевна
Минск 2017
Из истории полимеров
Первые упоминания о синтетических полимерах относятся к 1838 (поливинилиденхлорид) и 1839 (полистирол) годам. Ряд полимеров, возможно, был получен еще в первой половине 19 века. Но в те времена химики пытались подавить полимеризацию и поликонденсацию, которые вели к "осмолению" продуктов основной химической реакции, т. е. к образованию полимеров (полимеры и сейчас часто называют "смолами").
В 1833 И. Берцелиусом для обозначения особого вида изомерии впервые был применен термин "полимерия". В этой изомерии вещества (полимеры), имеющие одинаковый состав, обладали различной молекулярной массой, например этилен и бутилен, кислород и озон. Однако тот термин имел несколько другой смысл, чем современные представления о полимерах. "Истинные" синтетические полимеры к тому времени еще не были известны.
А. М. Бутлеров изучал связь между строением и относительной устойчивостью молекул, проявляющейся в реакциях полимеризации. После создания А. М. Бутлеровым теории химического строения возникла химия полимеров. Наука о полимерах получила свое развитие, главным образом, благодаря интенсивным поискам способов синтеза каучука. В этих исследованиях принимали участие учёные многих стран, такие как Г. Бушарда, У. Тилден, немецкий учёный К. Гарриес, И. Л. Кондаков, С. В. Лебедев и другие. Большую роль в развитии представлений о поликонденсации сыграли работы У. Карозерса.
В 30-х годах было доказано существование свободнорадикального и ионного механизмов полимеризации.
|
С начала 20-х годов 20 века Г. Штаудингер стал автором принципиально нового представления о полимерах как о веществах, состоящих из макромолекул, частиц необычайно большой молекулярной массы. До этого предполагалось, что такие биополимеры, как целлюлоза, крахмал, каучук, белки, а также некоторые синтетические полимеры, сходные с ними по свойствам (например, полиизопрен), состоят из малых молекул, обладающих необычной способностью ассоциировать в растворе в комплексы коллоидной природы благодаря нековалентным связям (теория "малых блоков"). Однако открытие Г. Штаудингера заставило рассматривать полимеры как качественно новый объект исследования химии и физики.
Полимеры — это химические соединения с высокой молекулярной массой (от нескольких тысяч до многих миллионов), молекулы которых (макромолекулы) состоят из большого числа повторяющихся группировок (мономерных звеньев). Атомы, входящие в состав макромолекул, соединены друг с другом силами главных и (или) координационных валентностей.
Классификация полимеров
Полимеры можно классифицировать по происхождению. Они делятся на природные (биополимеры) и синтетические. К биополимерам можно отнести белки, нуклеиновые кислоты, природные смолы, а к синтетическим полимерам — полиэтилен, полипропилен, феноло-формальдегидные смолы.
Полимеры классифицируются еще и по расположению атомов в макромолекуле. Атомы или атомные группы могут располагаться в макромолекуле в виде:
- открытой цепи или вытянутой в линию последовательности циклов (линейные полимеры, например каучук натуральный);
- цепи с разветвлением (разветвленные полимеры, например, амилопектин), трехмерной сетки (сшитые полимеры, например, отверждённые эпоксидные смолы).
Полимеры, молекулы которых состоят из одинаковых мономерных звеньев, называются гомополимерами (к ним относят поливинилхлорид, поликапроамид, целлюлозу).
|
Полимеры, макромолекулы которых содержат несколько типов мономерных звеньев, называются сополимерами. Сополимеры, в которых звенья каждого типа образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах макромолекулы, называются блок-сополимерами. К внутренним (неконцевым) звеньям макромолекулы одного химического строения могут быть присоединены одна или несколько цепей другого строения. Такие сополимеры называются привитыми.
Макромолекулы одного и того же химического состава могут быть построены из звеньев различной пространственной конфигурации. Если макромолекулы состоят из одинаковых стереоизомеров или из различных стереоизомеров, чередующихся в цепи в определенной периодичности, полимеры называются стереорегулярными.
По составу основной (главной) цепи полимеры подразделяют на: гетероцепные, в основной цепи которых содержатся атомы различных элементов, чаще всего углерода, азота, кремния, фосфора, и гомоцепные, основные цепи которых построены из одинаковых атомов.
Полимеры, в которых каждый или некоторые стереоизомеры звена образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах одной макромолекулы, называются стереоблок-сополимерами.
|
Из гомоцепных полимеров наиболее распространены карбоцепные полимеры, главные цепи которых состоят только из атомов углерода, например, полиэтилен, полиметилметакрилат, политетрафторэтилен.
Примеры гетероцепных полимеров — полиэфиры (полиэтилентерефталат, поликарбонаты), полиамиды, мочевиноформальдегидные смолы, белки, некоторые кремнийорганические полимеры. Полимеры, макромолекулы которых наряду с углеводородными группами содержат атомы неорганогенных элементов, называются элементоорганическими.
Отдельную группу полимеров образуют неорганические полимеры, например, пластическая сера, полифосфонитрилхлорид.
Свойства и основные характеристики полимеров
Полимеры могут существовать в кристаллическом и аморфном состояниях. Необходимое условие кристаллизации — регулярность достаточно длинных участков макромолекулы. В кристаллических полимерах возможно возникновение разнообразных надмолекулярных структур: фибрилл, сферолитов, монокристаллов, тип которых во многом определяет свойства полимерного материала. Надмолекулярные структуры в незакристаллизованных (аморфных) полимерах менее выражены, чем в кристаллических.
Целлюлоза — полимер с очень жесткими цепями, соединенными межмолекулярными водородными связями, вообще не может существовать в высокоэластичном состоянии до температуры ее разложения. Большие различия в свойствах полимеров могут наблюдаться даже в том случае, если различия в строении макромолекул на первый взгляд и невелики. Так, стереорегулярный полистирол — кристаллическое вещество с температурой плавления около 235 °С, а нестереорегулярный вообще не способен кристаллизоваться, и размягчается при температуре около 80 °С.
Незакристаллизованные полимеры могут находиться в трех физических состояниях: стеклообразном, высокоэластичном и вязко-текучем. Полимеры с низкой (ниже комнатной) температурой перехода из стеклообразного в высокоэластичное состояние называются эластомерами, с высокой — пластиками. В зависимости от химического состава, строения и взаимного расположения макромолекул свойства полимеров могут меняться в очень широких пределах. Так, 1,4.-цисполибутадиен, построенный из гибких углеводородных цепей, при температуре около 20 °С — эластичный материал, который при температуре -60 °С переходит в стеклообразное состояние; полиметилметакрилат, построенный из более жестких цепей, при температуре около 20 °С — твердый стеклообразный продукт, переходящий в высокоэластичное состояние лишь при 100 °С.
Линейные полимеры обладают специфическим комплексом физико-химических и механических свойств. Важнейшие из этих свойств:
- способность образовывать высокопрочные анизотропные высокоориентированные волокна и пленки, способность к большим, длительно развивающимся обратимым деформациям;
- способность в высокоэластичном состоянии набухать перед растворением;
- высокая вязкость растворов.
Этот комплекс свойств обусловлен высокой молекулярной массой, цепным строением, а также гибкостью макромолекул. При переходе от линейных цепей к разветвленным, редким трехмерным сеткам и, наконец, к густым сетчатым структурам этот комплекс свойств становится всё менее выраженным. Сильно сшитые полимеры нерастворимы, неплавки и неспособны к высокоэластичным деформациям.
Полимеры могут вступать в следующие основные типы реакций:
- образование химических связей между макромолекулами (так называемое сшивание), например, при вулканизации каучуков, дублении кожи;
- распад макромолекул на отдельные, более короткие фрагменты, реакции боковых функциональных групп полимеров с низкомолекулярными веществами, не затрагивающие основную цепь (так называемые полимер-аналогичные превращения);
- внутримолекулярные реакции, протекающие между функциональными группами одной макромолекулы, например, внутримолекулярная циклизация. Сшивание часто протекает одновременно с деструкцией.
Примером полимер-аналогичных превращений может служить омыление поливтилацетата, приводящее к образованию поливинилового спирта. Скорость реакций полимеров с низкомолекулярными веществами часто лимитируется скоростью диффузии последних в фазу полимера. Наиболее явно это проявляется в случае сшитых полимеров. Скорость взаимодействия макромолекул с низкомолекулярными веществами часто существенно зависит от природы и расположения соседних звеньев относительно реагирующего звена. Это же относится и к внутримолекулярным реакциям между функциональными группами, принадлежащими одной цепи.
Некоторые свойства полимеров, например, растворимость, способность к вязкому течению, стабильность очень чувствительны к действию небольших количеств примесей или добавок, реагирующих с макромолекулами. Так, чтобы превратить линейный полимер из растворимого в полностью нерастворимый, достаточно образовать на одну макромолекулу 1 – 2 поперечные связи.
Важнейшие характеристики полимеров — химический состав, молекулярная масса и молекулярно-массовое распределение, степень разветвленности и гибкости макромолекул, стереорегулярность и другие.
Получение полимеров
Природные полимеры образуются в процессе биосинтеза в клетках живых организмов. С помощью экстракции, фракционного осаждения и других методов они могут быть выделены из растительного и животного сырья. Синтетические полимеры получают полимеризацией и поликонденсацией. Карбоцепные полимеры обычно синтезируют полимеризацией мономеров с одной или несколькими кратными углеродными связями или мономеров, содержащих неустойчивые карбоциклические группировки (например, из циклопропана и его производных). Гетероцепные полимеры получают поликонденсацией, а также полимеризацией мономеров, содержащих кратные связи углеродоэлемента (например, С = О, С = N, N = С = О) или непрочные гетероциклические группировки.