ПРЕЛОМЛЕНИЕ СВЕТА. ЛИНЗЫ.




ОПТИКА. ПРЯМОЛИНЕЙНОЕ РАСПРОСТРАНЕНИЕ СВЕТА

1. К потолку комнаты высотой 4 м прикреплена люминесцентная лампа длиной 2 м. На высоте 2 м от пола параллельно ему расположен круглый непрозрачный диск диаметром 2 м. Центр лампы и центр диска лежат на одной вертикали. Найдите минимальный линейный размер тени.

 

2. К потолку комнаты высотой 4 м прикреплена лампа накаливания. На высоте 2 м от пола параллельно ему расположен непрозрачный квадрат со стороной 2 м. Центр лампы и центр квадрата лежат на одной вертикали. Найдите площадь тени квадрата на полу.

 

ПРЕЛОМЛЕНИЕ СВЕТА. ЛИНЗЫ.

1. В дно водоема глубиной 3 м вертикально вбита свая, скрытая под водой. Высота сваи 2 м. Угол падения солнечных лучей на поверхность воды равен 30°. Определите длину тени сваи на дне водоема. Коэффициент преломления воды n = 4/3

 

2. В дно водоема глубиной 3 м вертикально вбита свая, скрытая под водой. Высота сваи 2 м. Свая отбрасывает на дне водоема тень длиной 0,75 м. Определите угол падения солнечных лучей на поверхность воды. Показатель преломления воды n = 4/3

 

3. На поверхности воды плавает надувной плот шириной 4 м и длиной 6 м. Небо затянуто сплошным облачным покровом, полностью рассеивающим солнечный свет. Определите глубину тени под плотом. Глубиной погружения плота и рассеиванием света водой пренебречь. Показатель преломления воды относительно воздуха принять равным 4/3.

 

4. На поверхности воды плавает прямоугольный надувной плот длиной 6 м. Небо затянуто сплошным облачным покровом, полностью рассеивающим солнечный свет. Глубина тени под плотом равна 2,3 м. Определите ширину плота. Глубиной погружения плота и рассеиванием света водой пренебречь. Показатель преломления воды относительно воздуха принять равным 4/3.

 

5. Под водой находится понтон прямоугольной формы шириной 4 м, длиной 6 м и высотой 1 м. Расстояние от поверхности воды до нижней поверхности понтона 2,5 м. Небо затянуто сплошным облачным покровом, полностью рассеивающим солнечный свет. Определите глубину тени под понтоном (отсчитывая ее от нижней поверхности понтона). Рассеиванием света водой пренебречь. Показатель преломления воды относительно воздуха принять равным 4/3.

6. Пучок параллельных световых лучей падает нормально на тонкую собирающую линзу диаметром 6 см с оптической силой 5 дптр (см. рисунок). Экран расположен за линзой на расстоянии 10 см. Рассчитайте (в см) диаметр светлого пятна, созданного линзой на экране.

7. Пучок параллельных световых лучей падает нормально на тонкую собирающую линзу диаметром 6 см и оптической силой 5 дптр (см. рисунок). Экран освещен неравномерно. Выделяется более освещенная часть экрана (в форме кольца). Рассчитайте (в см) внутренний диаметр светлого кольца, создаваемого на экране. Экран находится на расстоянии 50 см от линзы.

8. Пучок параллельных световых лучей падает перпендикулярно на тонкую собирающую линзу оптической силой 5 дптр. Диаметр линзы 6 см (см. рисунок).
Каков внешний диаметр светлого кольца на экране, стоящем на расстоянии 60 см от линзы? Ответ выразите в сантиметрах.

 

9. Пучок параллельных световых лучей падает перпендикулярно на тонкую собирающую линзу оптической силой 5 дптр. Диаметр линзы 6 см. Диаметр светлого пятна на экране 12 см. На каком расстоянии (в см) от линзы помещен экран?

10. Равнобедренный прямоугольный треугольник ABC площадью 50 см2 расположен перед тонкой собирающей линзой так, что его катет AC лежит на главной оптической оси линзы. Фокусное расстояние линзы 50 см. Вершина прямого угла C лежит ближе к центру линзы, чем вершина острого угла A. Расстояние от центра линзы до точки C равно удвоенному фокусному расстоянию линзы (см. рисунок). Постройте изображение треугольника и найдите площадь получившейся фигуры.

 

 

11. Равнобедренный прямоугольный треугольник ABC площадью 50 см2 расположен перед тонкой собирающей линзой так, что его катет AC лежит на главной оптической оси линзы. Фокусное расстояние линзы 50 см. Вершина прямого угла C лежит дальше от центра линзы, чем вершина острого угла A. Расстояние от центра линзы до точки C равно удвоенному фокусному расстоянию линзы (см. рисунок). Постройте изображение треугольника и найдите площадь получившейся фигуры

 

12. Равнобедренный прямоугольный треугольник ABC расположен перед тонкой собирающей линзой оптической силой 2,5 дптр так, что его катет AC лежит на главной оптической оси линзы (см. рисунок). Вершина прямого угла C лежит ближе к центру линзы, чем вершина острого угла A. Расстояние от центра линзы до точки A равно удвоенному фокусному расстоянию линзы, AC = 4 см. Постройте изображение треугольника и найдите площадь получившейся фигуры.

Решение:

 

13. Равнобедренный прямоугольный треугольник ABC расположен перед тонкой собирающей линзой оптической силой 2,5 дптр так, что его катет AC лежит на главной оптической оси линзы (см. рисунок). Вершина прямого угла C лежит дальше от центра линзы, чем вершина острого угла A, расстояние от центра линзы до точки A равно удвоенному фокусному расстоянию линзы, AC = 4 см. Постройте изображение треугольника и найдите площадь получившейся фигуры.

 

 

14. Тонкая линза Л даёт чёткое действительное изображение предмета АВ на экране Э (см. рис. 1). Что произойдёт с изображением предмета на экране, если верхнюю половину линзы закрыть куском чёрного картона К (см. рис. 2)? Постройте изображение предмета в обоих случаях. Ответ поясните, указав, какие физические закономерности вы использовали для объяснения.

Рис. 1 Рис. 2

 

 

15.. Линза, фокусное расстояние которой 15 см, даёт на экране изображение предмета с пятикратным увеличением. Экран пододвинули к линзе вдоль её главной оптической оси на 30 см. Затем при неизменном положении линзы передвинули предмет так, чтобы изображение снова стало резким. На какое расстояние сдвинули предмет относительно его первоначального положения?

16. Линза, фокусное расстояние которой 15 см, дает на экране изображение предмета с пятикратным увеличением. Экран передвинули вдоль главной оптической оси линзы. Затем при неизменном положении линзы передвинули предмет, чтобы изображение снова стало резким. В этом случае получено изображение с трехкратным увеличением. На сколько пришлось сдвинуть предмет относительно его первоначального положения?

17. Условимся считать изображение на пленке фотоаппарата резким, если вместо идеального изображения в виде точки на пленке получается изображение пятна диаметром не более некоторого предельного значения. Поэтому, если объектив находится на фокусном расстоянии от пленки, то резкими считаются не только бесконечно удаленные предметы, но и все предметы, находящиеся дальше некоторого расстояния d. Оцените предельный размер пятна, если при фокусном расстоянии объектива 50 мм и диаметре входного отверстия 5 мм резкими оказались все предметы, находившиеся на расстояниях более 5 м от объектива. Сделайте рисунок, поясняющий образование пятна.

 

18. Условимся считать изображение на плёнке фотоаппарата резким, если вместо идеального изображения в виде точки на плёнке получается изображение пятна диаметром не более 0,05 мм. Поэтому если объектив находится на фокусном расстоянии от плёнки, то резкими считаются не только бесконечно удалённые предметы, но и все предметы, находящиеся дальше некоторого расстояния d. Найдите фокусное расстояние объектива, если при «относительном отверстии» α = 4 резкими оказались все предметы далее 12,5 м. («Относительное отверстие» - это отношение фокусного расстояния к диаметру входного отверстия объектива.) Сделайте рисунок, поясняющий образование пятна.

 

19. Объективы современных фотоаппаратов имеют переменное фокусное расстояние. При изменении фокусного расстояния «наводка на резкость» не сбивается. Условимся считать изображение на плёнке фотоаппарата резким, если вместо идеального изображения в виде точки на плёнке получается изображение пятна диаметром не более 0,05 мм. Поэтому если объектив находится на фокусном расстоянии от плёнки, то резкими считаются не только бесконечно удалённые предметы, но и все предметы, находящиеся дальше некоторого расстояния d. Оказалось, что это расстояние равно 5 м, если фокусное расстояние объектива 50 мм. Как изменится это расстояние, если, не меняя «относительного отверстия» изменить фокусное расстояние объектива до 25 мм? («Относительное отверстие» – это отношение фокусного расстояния к диаметру входного отверстия объектива.) При расчётах считать объектив тонкой линзой. Сделайте рисунок, поясняющий образование пятна.

 

20. Предмет высотой 6 см расположен на главной оптической оси тонкой собирающей линзы на расстоянии 30 см от ее оптического центра. Оптическая сила линзы 5 дптр. Найдите высоту изображения предмета. Ответ выразите в сантиметрах (см).

 

21. На экране с помощью тонкой линзы получено изображение стержня с пятикратным увеличением. Стержень расположен перпендикулярно главной оптической оси, и плоскость экрана также перпендикулярна этой оси. Экран передвинули на 30 см вдоль главной оптической оси линзы. Затем, при неизменном положении линзы, передвинули стержень так, чтобы изображение снова стало резким. В этом случае получено изображение с трехкратным увеличением. Определите фокусное расстояние линзы.

 

22. Небольшой груз, подвешенный на нити длиной 2,5 м, совершает гармонические колебания, при которых его максимальная скорость достигает 0,2 м/с. При помощи собирающей линзы с фокусным расстоянием 0,2 м изображение колеблющегося груза проецируется на экран, расположенный на расстоянии 0,5 м от линзы. Главная оптическая ось линзы перпендикулярна плоскости колебаний маятника и плоскости экрана. Определите максимальное смещение изображения груза на экране от положения равновесия.

23. Небольшой груз, подвешенный на нити длиной 2,5 м, совершает гармонические колебания, при которых его максимальная скорость достигает 0,2 м/с. При помощи собирающей линзы с фокусным расстоянием 0,2 м изображение колеблющегося груза проецируется на экран. Главная оптическая ось линзы перпендикулярна плоскости колебаний маятника и плоскости экрана. Максимальное смещение изображения груза на экране от равновесного составляет 0,15 м. Определите расстояние между плоскостью линзы и экраном.

 

24. Груз массой 0,1 кг, прикрепленный к пружине жесткостью 0,4 Н/м, совершает гармонические колебания с амплитудой 0,1 м. При помощи собирающей линзы с фокусным расстоянием 0,2 м изображение колеблющегося груза проецируется на экран, расположенный на расстоянии 0,5 м от линзы. Главная оптическая ось линзы перпендикулярна траектории груза и плоскости экрана. Определите максимальную скорость изображения груза на экране.

25. Не­боль­шой груз, под­ве­шен­ный на длин­ной нити, со­вер­ша­ет гар­мо­ни­че­ские ко­ле­ба­ния, при ко­то­рых его мак­си­маль­ная ско­рость до­сти­га­ет 0,1 м/с. При по­мо­щи со­би­ра­ю­щей линзы с фо­кус­ным рас­сто­я­ни­ем 0,2 м изоб­ра­же­ние ко­леб­лю­ще­го­ся груза про­еци­ру­ет­ся на экран, рас­по­ло­жен­ный на рас­сто­я­нии 0,5 м от линзы. Глав­ная оп­ти­че­ская ось линзы пер­пен­ди­ку­ляр­на плос­ко­сти ко­ле­ба­ний ма­ят­ни­ка и плос­ко­сти экра­на. Мак­си­маль­ное сме­ще­ние изоб­ра­же­ния груза на экра­не от по­ло­же­ния рав­но­ве­сия равно А1 = 0,1 м. Чему равна длина нити l?

26. На оси ОХ в точке x1 = 10 см находится тонкая рассеивающая линза с фокусным расстоянием F1 = - 10 см, а в точке х2 = 25 см - тонкая собирающая линза. Главные оптические оси обеих линз совпадают с осью ОХ. Свет от точечного источника, расположенного в точке х = 0, пройдя данную оптическую систему, распространяется параллельным пучком. Найдите фокусное расстояние собирающей линзы F2

ВОЛНОВАЯ ОПТИКА

1. Дифракционная решетка расположена параллельно экрану на расстоянии 0,7 м от него. Определите количество штрихов на 1 мм для этой дифракционной решетки, если при нормальном падении на нее светового пучка с длиной волны 0,43 мкм первый дифракционный максимум на экране находится на расстоянии 3 см от центральной светлой полосы. Считать sina = tga. Ответ округлите до целых.

 

 

2.. Дифракционная решетка с периодом 10–5 м расположена параллельно экрану на расстоянии 1,8 м от него. Какого порядка максимум в спектре будет наблюдаться на экране на расстоянии 20,88 см от центра дифракционной картины при освещении решетки нормально падающим пучком света длиной волны 580 нм? Считать sinα » tgα.

 

3. Дифракционная решетка с периодом 10–5 м расположена параллельно экрану на расстоянии 1,8 м от него. Какого порядка максимум в спектре будет наблюдаться на экране на расстоянии 10,44 см от центра дифракционной картины при освещении решетки нормально падающим пучком света длиной волны 580 нм? Считать sinα » tgα.

 

4. Определите постоянную дифракционной решетки, если при её освещении светом длиной 656 Нм второй спектр виден под углом 15°. Примите, что sin j = 0,25. Ответ выразите в миллиметрах, умножьте на 103.

 

5. На дифракционную решетку, имеющую 500 штрихов на мм, перпендикулярно ей падает плоская монохроматическая волна. Какова длина падающей волны, если спектр 4-го порядка наблюдается в направлении, перпендикулярном падающим лучам? Ответ дайте в нанометрах.

 

6. На дифракционную решетку, имеющую период 2·10–5 м, падает нормально параллельный пучок белого света. Спектр наблюдается на экране на расстоянии 2 м от решетки. Каково расстояние между красным и фиолетовым участками спектра первого порядка (первой цветной полоски на экране), если длины волн красного и фиолетового света соответственно равны 8·10–7 м и 4·10–7м? Считать sinφ = tgφ. Ответ выразите в см.

 

7. Дифракционная решетка, имеющая 750 штрихов на 1 см, расположена параллельно экрану на расстоянии 1,5 м от него. На решетку перпендикулярно ее плоскости направляют пучок света. Определите длину волны света, если расстояние на экране между вторыми максимумами, расположенными слева и справа от центрального (нулевого), равно 22,5 см. Ответ выразите в микрометрах (мкм) и округлите до десятых. Считать sin a ≈ tg a

 

8. Какое число штрихов на единицу длины имеет дифракционная решетка, если зеленая линия (l = 550 Нм) в спектре первого порядка наблюдается под углом 19°? Считать, что sin j = 0,33. Ответ выразите в (мм –1).

 

9. Плоская монохроматическая световая волна с длиной волны 400 нм падает по нормали на дифракционную решетку с периодом 5 мкм. Параллельно решетке позади нее размещена собирающая линза с фокусным расстоянием 20 см. Дифракционная картина наблюдается на экране в задней фокальной плоскости линзы. Найдите расстояние между ее главными максимумами 1-го и 2-го порядков. Ответ запишите в миллиметрах (мм), округлив до целых. Считать для малых углов (j<< 1 в радианах) tgφ ≈ sinφ ≈ φ

 

10. Плоская монохроматическая световая волна падает по нормали на дифракционную решетку с периодом 5 мкм. Параллельно решетке позади нее размещена собирающая линза с фокусным расстоянием 20 см. Дифракционная картина наблюдается на экране в задней фокальной плоскости линзы. Расстояние между ее главными максимумами 1-го и 2-го порядков равно 18 мм. Найдите длину падающей волны. Ответ выразите в нанометрах (нм), округлив до целых. Считать для малых углов (j << 1 в радианах) tgφ ≈ sinφ ≈ φ

 

11. В момент времени t = 0 ключ замыкают, что приводит к изменениям силы тока, регистрируемым амперметром, как показано на рис. 2. Основываясь на известных физических законах, объясните, почему при замыкании ключа сила тока плавно увеличивается до некоторого нового значения – I 1. Определите значение силы тока I 1. Внутренним сопротивлением источника тока пренебречь.

12. Дифракционная решетка имеет расстояние между штрихами 1 мкм. Она находится в прямоугольной кювете, заполненной водой, показатель преломления которой n = 4/3, и располагается параллельно боковой стенке кюветы. Свет падает перпендикулярно боковой стенке кюветы и проходит через решетку. Один из образовавшихся при дифракции лучей выходит под углом α = 30° (см. рисунок). Какова длина волны источника света в воде, если этот луч образует первый дифракционный максимум?

13. При исследовании структуры кристаллической решетки пучок электронов, имеющих одинаковую скорость v, направляется перпендикулярно поверхности кристалла вдоль оси Oz, как показано на рисунке. После взаимодействия с кристаллом отраженные от первого слоя электроны движутся в определенных направлениях, образуя дифракционные максимумы. В плоскости Ozx возникает максимум первого порядка. Чему равен период атомной решетки исследуемого вещества вдоль оси Ох, если кинетическая энергия электронов равна 54 эВ, а первый дифракционный максимум соответствует отражению электронов под углом α = 50° к оси Oz в плоскости xOz?

14. Между краями двух хорошо отшлифованных тонких плоских стеклянных пластинок помещена тонкая проволочка диаметром 0,05 мм; противоположные концы пластинок плотно прижаты друг к другу. На верхнюю пластинку нормально к её поверхности падает монохроматический пучок света. Определите длину волны света, если на пластинке длиной 10 см наблюдаются интерференционные полосы, расстояние между которыми равно 0,6 мм.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-16 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: