Изотопа водорода
первичная масса | 1,00000000 | |
магнитная масса | 0,00639205 | |
электрическая масса | 0,00057870 | |
М ½-½-0 | безмассовый нейтрон | 1,00697075* |
М ½-½-(1) | нейтрино | 0,00057870* |
М 1-1-(1) | протон | 1,00754945 |
М 2-2-(1) | нейтрино | 0,00057870* |
М 1½-1½-(2) | водород (Н1) | 1,00812815 |
* потенциальная масса
Локальная окружающая среда изобилует нейтрино. Следовательно, условие для создания новой материи в форме водорода с помощью процесса прибавления – это непрерывное обеспечение безмассовых нейтронов. В главе 15 мы обнаружим наличие гигантского процесса, действующего для обеспечения такого запаса.
Прибавление космического нейтрино, смещение вращения которого происходит на противоположной стороне от границы единицы, к протону вовлекает дополнительную первичную электрическую единицу, поскольку и вращение во времени, и вращение в пространстве должны начинаться с единицы. Пространственное действие вращения космического нейтрино трехмерно, поскольку пространственное направление движения во времени неопределенно. Общее прибавление массы к протону при создании сложного нейтрона составляет 0,00144676, и результирующая масса частицы составляет 1,00899621. Она была измерена как 1,008982.
Далее приводится таблица масс частиц и компонентов массы, из которых построены эти массы. Для сравнения приводятся эмпирические величины из подборки 1957 года. Как замечалось раньше, корреляция для электрона и протона удовлетворительна, поскольку лежит в пределах оценочной области погрешности эксперимента. Расхождение в случае более тяжелых частиц невелико, но превышает погрешность эксперимента. Пребывает ли источник расхождения в теории или в экспериментальных определениях остается невыясненным.
|
Структура массы | Частица | Масса | |
Вычисленная | Наблюдаемая | ||
e - c | заряженный электрон | 0,00054874 | 0,00054876 |
e - c | заряженный позитрон | 0,00054874 | 0,00054876 |
e | электрон | 0,00057870* | безмассовый |
e | позитрон | 0,00057870* | безмассовый |
e | нейтрино | 0,00057870* | безмассовый |
p + m + e | безмассовый нейтрон | 1,00697075* | безмассовый |
p + m + 2e | протон | 1,00754945 | ненаблюдаемый |
p + m + 2e + C | заряженный протон | 1,00759439 | 1,007593 |
p + m + 3e | водород (H1) | 1,008l28l5 | 1,008142 |
p + m + 3e + E | сложный нейтрон | 1,00899621 | 1,008982 |
* потенциальная масса |
В первом издании отношение между естественной единицей массы и случайной единицей в системе СГС определялось в терминах гравитационной константы. Недавно Тодд Келсо и Стивен Берлин указали, что установленное таким образом отношение не может быть переведено в другую систему единиц, такую как система СИ (метр, килограмм, секунда). Стало очевидно, что интерпретация гравитационного феномена, на которой базировалось предыдущее определение, было ошибочной. Чтобы определить ошибку, ситуация была проанализирована.
Как описано в этом томе, ошибочность интерпретации уравнения гравитации не оказывает никакого влияния на любую характеристику теоретических результатов, полученных из СТОВ. Она лишь оставила эту систему теории без связи между уравнением гравитации и теоретической структурой. Как только ситуация рассматривается в таком свете, сразу же становится ясно, что для СТОВ не характерна связь между уравнением и физической теорией. Традиционная теория тоже не определяет эту связь. Учебники по физике считают необходимым признать этот факт в таких утверждениях, как: “Следует отметить, что закон всеобщего тяготения Ньютона не является определяющим уравнением как второй принцип механики и не может выводиться из определяющих уравнений. Он представляет собой наблюдаемое отношение ”. Это теоретическое расхождение, которое не способна разрешить традиционная физика. Но поскольку это отдельное расхождение, его можно засунуть под ковер, приписывая гравитационной константе выдуманные размерности.
|
Из этого следует, что ошибка объясняется интерпретацией “наблюдаемого отношения”, общей для традиционной теории и СТОВ. Очевидно, разработчики обеих теоретических систем неправильно поняли истинную природу феномена. Как говорилось в предыдущих главах, в действительности одна масса не действует на другую, каждая следует своим путем, независимым от других. Но результаты движения вовнутрь двух масс похожи на те, которые получились бы, если бы массы притягивали друг друга. Следовательно, на основании “как бы” эти результаты можно представить в терминах силы притяжения. Но чтобы это сделать, нам придется поместить силы “как бы” на ту же основу, что и реальные силы.
Сила может действовать только против сопротивления. Поэтому, когда мы приписываем силу движению одной массы, мы не можем приписать ее движению другой массы. Второй массе мы должны приписать сопротивление. Следовательно, “как бы” сила - сила гравитации - оказывается против “как бы” инерционного сопротивления. В предыдущем обсуждении мы определили гравитацию как трехмерное движение s3/t3, а инерцию как трехмерное сопротивление движению t3/s3. Следовательно, произведение гравитационного движения на инерционное сопротивление не содержит измерений массы во второй степени, как указывает традиционное выражение уравнения гравитации; оно не обладает измерениями.
|
Это как раз та ситуация, в которой очень помогает способность сводить все физические величины к терминам пространства-времени. Прежде чем затронуть проблему числовых величин, было бы удобно независимо исследовать ситуацию с размерностью. В современной практике уравнение гравитации обладает следующими размерностями:
(дины см2 г-2) x г2 x см-2 = дины (13-1)
Сводя уравнение 13-1 к терминам пространства-времени в соответствии с отношениями, установленными в главе 12 (в которых дины в г-см/сек2 выражаются как t³/s³ x s x 1/t² = t/s²), мы получаем
(t/s² x s² x s6/t6) x t6/s6 x 1/s² = t/s ² (13-2)
В свете нового понимания термина mm' как безразмерного произведения гравитационной и инерционной массы, очевидно, что размерность s6/t6 принадлежит скорее mm', чем гравитационной константе. Когда они применяются таким способом, результирующие размерности mm' взаимно уничтожаются, что и делают истинные теоретические размерности. Следовательно, мы можем заменить их правильными размерностями. Как указывалось в первом издании, в привычном приписывании размерностей этому уравнению есть еще две ошибки. На самом деле термин “расстояние” не обладает размерностями. Это отношение 1/n2 к 1/12. Размерности, ошибочно приписываемые этому термину, принадлежат термину, существование которого не осознавалось потому, что он равен единице, и, следовательно, не входит в числовые вычисления. Чтобы поместить “как бы” гравитационное взаимодействие на ту же основу, что и реальное взаимодействие, мы должны выразить его в терминах действия силы на сопротивление, а не как действие массы на сопротивление. И поскольку размерности термина “масса” уничтожились так, что гравитационная масса входит в уравнение лишь как число, не обладающее размерностями, сила гравитации должна выражаться в терминах истинной силы; то есть как t/s2. Тогда правильная форма уравнения такова:
(s³/t³ x t³/s³) x t/s² = t/s² (13-3)
Возвращаясь к числовым величинам, заметим: в то время как размерности термина mm' взаимно уничтожились, величины не уничтожились. Каждая единица массы является и единицей s³/t³ и единицей t³/s³, каждая в надлежащем контексте. Поскольку единицы независимы, действующая величина “как бы” действия m единиц гравитации против m' единиц инерционного сопротивления равна mm'. Однако выражение обеих масс в терминах традиционных единиц создает числовую ошибку, поскольку лишь термин инерционной массы уравновешивается традиционной величиной массы на другой стороне уравнения. Чтобы компенсировать эту ошибку, в гравитационную константу следует ввести соответствующий обратный коэффициент. Ошибки нет, если гравитационная масса выражается в естественных единицах, поскольку величина 1 не требует никакого уравновешивающего термина. Следовательно, величина необходимого корректирующего коэффициента определяется отношением между естественными и традиционными единицами.
Один грамм составляет 6,02486 x 1023 единиц инерционной массы (t³/s³). Обратная величина составляет 1,65979 x 10-24. Но при гравитационном взаимодействии действует лишь одна шестая общей величины массы, потому что “как бы” взаимодействие происходит только в одном измерении и только в одном из двух направлений этого измерения. Следовательно, общая величина s³/t³ единиц, соответствующая действующей массе одного грамма, составляет 9,95 x 74 x 10-24. Выражение этой массы как одной единицы увеличивает числовую величину, и в качестве компонента гравитационной константы должна включаться коррекция этой величины.
Из-за влияния вторичной массы требуется небольшая дополнительная коррекция. В связи с первичной массой гравитация и инерция обратны друг другу; то есть, первичная масса составляет p/(p + s) единиц гравитационной массы и p/(p + s) единиц инерционной массы, где p и s – соответственно первичные и вторичные массы. Произведение единицы гравитационной массы и единицы инерционной массы составляет 1/(1 + s)2 единиц первичной массы. Если результат выражается в терминах инерционной массы, вводится еще один коэффициент 1 + s. Тогда общее действие вторичной массы – это введение коэффициента 1,019299. Применяя этот коэффициент к величине 9,95874 x 10-24, мы получаем 1,015093 x 10-23.
Замена термина расстояния 1/s2 термином силы t/s2 выливается в появление размерности времени, которое во избежание создания числового дисбаланса должно выражаться в естественных единицах. Числовая величина естественной единицы времени 1,520655 x 10-16 частично компенсирует ошибки в терминах массы. Общая коррекция, которую следует произвести, такова: 1,015093 x 10-23, деленное на естественную единицу времени; в результате получается 6,67537x10-8. Это и есть гравитационная постоянная в системе единиц СГС.
Рассматривая вопрос превращения в другую систему единиц, проблему, приведшую к новому изучению ситуации, мы обнаруживаем, что превращение единиц из СГС в МКС в традиционной форме уравнения (13-1) приводит к изменению 10-6 в термине массы, 10-4 в термине расстояния и 10-5 в термине силы. Тогда для равновесия требуется изменение 10-3 в гравитационной константе. В теоретическом уравнении (13-3) общее действие изменения в системе единиц сводится к отношению естественных и традиционных единиц массы. Как можно видеть из предоставленного объяснения, гравитационная константа пропорциональна отношению этих единиц. Перевод традиционной единицы из граммов в килограммы меняет это отношение на 10-3. Гравитационная константа меняется на ту же величину. Это согласуется с результатом, наблюдаемым в уравнении 13-1.
Те, кто знаком с первым изданием, заметят, что величины естественной единицы инерционной массы и соответствующие величины, приведенные раньше в этой главе, больше величин, приведенных в первой публикации. В начале исследования казалось, что коэффициент 1/3, введенный в ситуацию массы, являлся достаточным оправданием для применения этого коэффициента к величине базовой единицы. Как видно из предыдущих параграфов, сейчас мы находим, что коэффициент 1/3 является результатом одномерной природы гравитационного взаимодействия “как бы”. Поэтому этот коэффициент убран из единиц массы. В результате, как определено в этом издании, естественная единица инерционной массы в три раза больше, чем величина, приведенная в первом издании (с маленькой поправкой для отражения результатов непрерывного изучения деталей включенных явлений). Использование б о льших единиц не влияет на физические отношения, включающие инерционную массу, поскольку выражения этих отношений являются балансирующими уравнениями, в которых термины массы пребывают в равновесии с терминами, представляющими величины, выведенные из массы.
Глава 14
Космические элементы
Как указывалось в главе 6, инверсия пространства и времени в физических явлениях, возможная по причине обратной взаимообусловленности двух сущностей, может относиться только к одной из составляющих движений сложной физической сущности или явления, или ко всей структуре в целом. Мы уже исследовали некоторые эффекты инверсии индивидуальных компонентов движения, такие как поступательное движение во времени, отрицательное смещение в электрическом измерении атомного вращения, и так далее. Сейчас мы готовы рассмотреть следствие полных инверсий.
Уже отмечалось, что комбинации вращения, составляющего атомы и субатомные частицы материальной системы, являются фотонами, вибрирующими во времени и вращающимися в пространстве, и что они соответствуют аналогичной системе комбинаций, в которых фотоны вибрируют в пространстве и вращаются во времени. В этой связи следует подчеркнуть, что обратная система - космическая система атомов и субатомных частиц - идентична материальной системе во всех отношениях, кроме инверсии пространства-времени. Имеется космический углерод (2)-(1)-(4), соответствующий углероду М 4-1-4. Имеется космическое нейтрино К (½)-(½)-1, соответствующее нейтрино M ½-½-(1), и так далее.
Более того, идентичность одинаково распространяется на все сущности и феномены физической Вселенной. Поскольку все существующее в материальном секторе Вселенной проявлено из движения, каждый пункт точно дублируется в космическом секторе со сменой пространства и времени. Следовательно, детальное описание материального сектора Вселенной, которое шаг за шагом мы выводим из развития следствий базовых постулатов СТОВ, распространяется и на космический сектор. Поэтому, хотя космический сектор почти не наблюдаем, у нас есть точное и детальное знание этого сектора (кроме информации об особых единичных представителях разных классов объектов), как и материального сектора.
Однако следует отметить: наше знание материального сектора – это знание того, как явления в этом секторе выглядят при наблюдении из точки внутри этого сектора; то есть, положения в гравитационно связанной системе. То, что мы знаем о космическом секторе посредством применения обратного отношения, - это знание той же природы - информация о том, как явления космического сектора выглядят при наблюдении из положения в этом секторе; положения в системе, гравитационно связанной во времени. С нашей точки зрения такое знание не обладает непосредственным значением, поскольку мы не можем наблюдать с такого положения. Но оно создает основу, базируясь на которой мы можем определить, как явления космического сектора и явления, возникающие в этом секторе, теоретически предстали бы нашему наблюдению.
Один из самых запутанных вопросов современной физики: Что такое антиматерия? Соображения симметрии, введенные в современные теории структуры материи, указывают на обязательное существование “анти” форм элементов, из которых строится обычная материя. И что во Вселенной в целом “антиматерия”, построенная этими “антиэлементами”, должна существовать в таком же изобилии, что и обычная материя. Теоретически, “антизвезд” и “антигалактик” должно быть столько же, сколько обычных звезд и обычных галактик. Но нет убедительного свидетельства существования любых таких объектов. Предполагалось, что некоторые из наблюдаемых галактик могли состоять из антиматерии. Например, Олфвен утверждает, что имеется “определенная вероятность того, что, астрономически говоря, по соседству с нами могут находиться антимиры. Нельзя исключать, что туманность Андромеды, самая близкая к нам галактика, или даже звезды внутри нашей галактики состоят из антиматерии”.60 Но при условии отсутствия любых демонстрируемых средств распознавания излучения, создаваемого галактикой гипотетической антиматерии, и излучения, создаваемого галактикой обычной материи, это чистое допущение. Поэтому вопрос остается открытым. Где же находится антиматерия?
СТОВ предлагает ответ. Новая Структура Теории признает, что антиматерия (на самом деле обратная материя, космическая материя, мы называем ее s) существует, она так же изобильна в физической Вселенной, как и обычная материя. СТОВ говорит: галактики космической материи не локализованы в пространстве; они локализованы в трехмерном времени. Последовательность времени, в которой живем мы, несет нас в трехмерном времени способом, аналогичным линейному движению в трехмерном пространстве. Лишь небольшая часть общего количества объектов, занимающих положения в пространственной системе отсчета, сталкивалась бы с ходом одномерного пространственного движения такого вида. То же справедливо и для ряда космических объектов, которые в нашей последовательности сталкиваются с ходом времени, по сравнению с количеством объектов, занимающих положения в трехмерной временной системе отсчета.
Более того, гравитация в космическом секторе действует во времени, а не в пространстве. Атомы, из которых формируется космическая совокупность, близки во времени, но широко рассеяны в пространстве. Поэтому даже то относительно небольшое количество космических совокупностей, с которыми мы сталкиваемся в своем движении во времени, не воспринимаются как пространственные совокупности; они воспринимаются как индивидуальные атомы, широко рассеянные в пространстве. Мы не можем опознать космическую звезду или галактику потому, что наблюдаем лишь один атом за раз. Излучение из космической совокупности тоже рассеяно. Такое излучение постоянно достигает нас, но мы наблюдаем его как исходящее от индивидуальных широко рассеянных атомов, а не локализованных совокупностей. Поэтому, с нашей точки зрения, излучение изотропно. Несомненно, такое излучение может приравниваться к “излучению черного тела”, статусу, ныне приписываемому остаткам Большого Взрыва.
Все сенсационные предположения о существовании наблюдаемых звезд и галактик антиматерии и возможных следствий взаимодействия этих совокупностей с телами, состоящими из обычной материи, не имеют под собой никакой основы. Генераторы антиматерии в научной фантастике, обеспечивающие энергию для космического путешествия, будут оставаться на полках научной фантастики.
Особо следует отметить разницу между космической звездой и белым карликом. Пока рассматривается поступательная скорость, оба находятся на стороне времени от разделяющей линии; то есть, оба состоят из материи, движущейся быстрее скорости света. Белый карлик ничем не отличается от обычной звезды материального сектора. Пространственно-временное отношение перевернуто лишь в поступательном движении компонентов. И, наоборот, у космической звезды все пространственно-временные отношения обратны пространственно-временным отношениям обычной материальной звезды; не только поступательное движение, но и вибрационные и вращательные движения составляющих атомов, и что особо значимо в настоящем обсуждении, действие гравитации. Белый карлик – это совокупность в пространстве, и мы видим его именно так, в то время как космическая звезда является совокупностью во времени, поэтому мы не можем распознавать ее как совокупность.
Даже те контакты, которые происходят между материей и индивидуальными частицами космической материи (антиматерии), входящими в локальное окружение, не дают результатов, ожидавшихся на основании современной теории. Согласно современной мысли, существенным различием между материей и антиматерией считается обратный заряд. Полагают, что атом состоит из положительно заряженного ядра, окруженного отрицательно заряженными электронами. Далее предполагается, что антиатом обладает обратной структурой: отрицательно заряженным ядром, окруженным положительно заряженными электронами (позитронами). За этим следует дальнейшее допущение: действенный контакт между любой частицей и античастицей привел бы к уничтожению всех зарядов и превращению всех частиц в энергию излучения.
Это типичный пример результатов разделения в современной физической теории, позволяющих допущение в связи с одной областью применения и прямое противоречие этому допущению в связи с другой областью, и оба они пребывают под знаменем “современной физики”. Если общепринятая теория требует, чтобы при близком контакте противоположные заряды нейтрализовали друг друга, считается, что они это делают. Если это не увязывается с теорией, как в электрическом объяснении структуры материи, охотно допускается, что заряды приспосабливают свое поведение к требованиям теории и принимают устойчивые относительные положения вместо разрушения друг друга. В настоящем примере оба противоречащих друг другу допущения работают одновременно. Устойчивые заряды, которые почему-то не влияют друг на друга, “аннигилируются” другими зарядами, по-видимому, идентичными по природе. Мы находим: где бы реально ни существовали электрические заряды, при контакте противоположные заряды уничтожают друг друга.
Однако из этого не следует, что нейтрализация заряда эквивалентна аннигиляции. В реальной практике лишь одна из реакций между частицами и тем, что считается античастицами, следует теоретическому сценарию аннигиляции. Фактически, при контакте электрон и позитрон аннигилируют друг друга с возникновением противоположно направленных фотонов. В общепринятом смысле термина античастица протона – частица, эквивалентная протону во всех отношениях, кроме отрицательного заряда, - обнаружена, но контакт антипротона с протоном не создает аннигиляции частиц в энергию излучения. Бурсе и Моц сообщают: “Здесь ситуация не так проста, как при аннигиляции пары электрон-позитрон”.61 Конечно, не так проста. Взаимодействие этих частиц создает ассортимент недолговечных и неустойчивых частиц, существенно не отличающихся от тех, которые появляются в результате других высокоэнергетических взаимодействий. Как говорят эти авторы, в процессе “высвобождаются разные виды мезонов”. В свете новых результатов очевидно, что это не реакции аннигиляции, это реакции построения космического атома. Природу и характер таких реакций мы будем исследовать в главе 16.
Также сообщалось и об обнаружении антинейтрона, но свидетельство это косвенное. Довольно трудно примирить разные идеи по поводу того, каким должен быть антинейтрон, с концепцией переворота зарядов как существенного различия между частицей и античастицей. На основании гипотезы переворота заряда нейтральная частица вообще не должна иметь никаких “анти” форм. Конечно, те, кто отстаивает мнение, что “каждая частица имеет свою античастицу”, оправдывают это утверждение допущением, что каждая нейтральная частица имеет свою античастицу. В ныне принятом смысле термина это привело бы к существованию отдельного антинейтрона. В любом случае проблема нейтральных частиц – это еще одно положение, которое, как и в случае отсутствия аннигиляции в “реакциях аннигиляции”, подчеркивает неадекватность традиционной теории атомной структуры в связи с феноменом “антиматерии”.
Во Вселенной Движения атом не является электрической структурой. Как детально обсуждалось на предыдущих страницах, атом – это комбинация вращательных и вибрационных движений. В структурах материального типа скорость вращательных движений меньше единицы (скорости света), а скорость вибрационного движения больше единицы. В структурах космического типа отношения перевернуты. У них скорость вибрационного движения меньше единицы, а скорость вращательного движения больше единицы. Истинная “античастица” материальной частице или атому – это комбинация движений, в которой положительные смещения вращения и отрицательные смещения вибрации материальной структуры заменяются отрицательными смещениями вращения и положительными смещениями вибрации равной величины.
В одной из реакций, ныне приписываемой взаимной аннигиляции античастицы, действительно происходит нейтрализация смещений. В этом случае комбинация электронов и позитронов действительно аннигилируется; то есть, они превращаются в энергию излучения, и их существование как частиц класса вращения прекращается. На самом деле, в эту реакцию включаются два разных процесса. Первый: противоположно направленные заряды уничтожают друг друга, оставляя обе частицы в неизменном состоянии. Второй: их вращения М 0-0-1 и М 0-0-(1) комбинируются с 0-0-0, которое вообще не является действующим вращением. Проще говоря, мы могли бы описать второй процесс как выпрямление вращательного движения. Между двумя процессами имеется короткий интервал, и эффекты, приписанные “позитронию”, - гипотетической коротко живущей комбинации электрона и позитрона - по-видимому, происходят в период этого интервала.
Степень, в какой при контактах между античастицами, иными, чем электрон, и позитроном может действительно происходить аннигиляция, - еще не изучена. Если наблюдаемый антипротон действительно является настоящей античастицей протону, то есть, космическим протоном, тогда результат наблюдаемых контактов этих частиц достаточно определенно указывает на то, что аннигиляция ограничивается одномерными частицами. Если же наблюдаемый антипротон является просто материальным протоном с отрицательным зарядом - вероятность, не исключаемая на нынешней стадии исследования, - тогда наблюдаемые результаты взаимодействий относятся не к вопросу, а к ситуации, еще более неблагоприятной для аннигиляции. Препятствия на пути гарантированного контакта между соответствующими движениями, очевидно, возрастают с усложнением комбинации вращения, и весьма сомнительно, что в разных измерениях могут происходить необходимые синхронные контакты. Поэтому представляется, что заманчивая возможность получения энергии путем контакта между материей и антиматерией исключается не только как крупномасштабный процесс (из-за невозможности концентрации антиматерии в пространстве, как указывалось раньше), но и как единичный атомный процесс.
Ввиду того, что наша нынешняя цель – исследовать явления космического сектора Вселенной, доступные нашему наблюдению, наблюдаемые античастицы, являющиеся продуктами высокоэнергетических процессов в материальном секторе, относятся к делу лишь в той степени, в какой проливают свет на вид поведения, который можно ожидать от космических объектов, входящих в поле нашего наблюдения. Как указывалось раньше, некоторые из входящих объектов известны как результат случайных контактов по ходу нашего движения в трехмерном времени. Кроме того, имеются процессы (которые будут описываться позже), связанные с перебрасыванием существенных количеств материи из одного сектора в другой. Таким образом, часть материального сектора в наблюдаемой нами области подвергается непрерывному втеканию космической материи. Втекающие частицы этой материи можно определить как космические лучи.
Космические лучи – это частицы, входящие в локальные рамки отсчета из всех направлений с крайне высокими скоростями, в также разнообразие вторичных частиц, возникающих в результате событий, инициированных первичными частицами. Вторичные частицы включают некоторые обычные субатомные частицы материальной системы, такие как электроны и нейтрино, а также ряд переходных частиц с крайне коротким сроком жизни, начиная с 10-6 секунды. До открытия космических лучей последние были неизвестны, но создавались в результате высокоэнергетических процессов в ускорителях частиц.
В современной мысли первичные частицы рассматриваются как обычные материальные атомы. Доводы в пользу этого вывода можно суммировать следующим образом:
(1) Субатомные частицы исключаются, поскольку по той или иной причине все они не способны создавать наблюдаемые эффекты. Это значит: если они не принадлежат неизвестному классу частиц, тогда первичные космические лучи должны быть атомами.
(2) Массы атомов, составляющих первичные частицы нельзя определить на современной стадии развития инструментария и техник, но можно определить заряды индивидуальных частиц, И то, что они полностью ионизированы, указывает на атомные номера. На этом основании распределение элементов во входящих космических лучах приближается к оцененному распределению в наблюдаемой Вселенной в целом.
При отсутствии любой известной альтернативы этих доводов достаточно для признания вывода, что первичные частицы являются атомами обычных материальных элементов. Однако если возникает проблема достоверности, как это и должно быть при наличии альтернатив, ясно, что в эмпирических данных содержится много противоречий. Самые серьезные из них следующие:
(1) Скорости и энергии первичных субатомных частиц слишком велики, чтобы увязываться с их созданием посредством обычных физических процессов. Ни один известный процесс или даже убедительный умозрительный процесс, основанный на традиционной физике, не способен создавать энергии, приближающиеся к 1020 электрон-вольт. Как говорится в Британской Энциклопедии: “Как объяснить овладение такими энергиями – волнующая физическая и космологическая проблема”.
(2) За исключением некоторых относительно низкоэнергетических лучей, которые считаются появляющимися на Солнце, большинство первичных субатомных частиц обладают энергиями в диапазоне, указывающем на скорости, близкие к скорости света. Ввиду того, что перед наблюдениями, несомненно, происходит уменьшение скорости, на основании наблюдаемого свидетельства (то есть, отвергая любое чисто теоретическое ограничение) весьма возможно, что лучи, входящие в локальную окружающую среду, двигались со скоростью света. Это еще одно указание на их необычное происхождение.
(3) В то время как распределение элементов, выведенное из зарядов космических лучей, приближается к оцененному распределению в наблюдаемой Вселенной в целом, имеются и существенные различия. Например, пропорция атомов железа в космических лучах в 50 раз больше, чем в обычной материи. Сообщалось, что лития больше в 1000 раз (хотя какая-то часть лития может появляться как продукт распада). Поэтому космические лучи не могут быть обычной материей, извлеченной из общего резервуара и ускоренной до высоких скоростей каким-то неизвестным процессом. Должно быть, они появляются из какого-то необычного вида источника. В современной физической мысли аномалиям в “спектре заряда” космических лучей уделяется мало внимания потому, что они не поддаются никакому известному объяснению. Но значимость таких отклонений от обычного изобилия следовало осознать тогда, когда наблюдались первые признаки отклонений. Например, Хупер и Шарф (1958) заметили: “Избыток тяжелых ядер допускает необходимость пересмотра наших фундаментальных идей о происхождении первичного излучения”.62
(4) Все основные продукты первичных лучей обладают крайне коротким сроком жизни. Если до истечения этого срока они не повергаются столкновениям, они распадаются в полете на частицы меньшей массы и равного или более продолжительного срока жизни. Имеется много свидетельств, указывающих, что это распространяется и на первичные субатомные частицы. Например, в некоторых наблюдаемых событиях переходная частица покидает сцену на траектории движения первичных частиц и уносит с собой часть первичной энергии. Такие события интерпретируются так: это процессы, в которых первичные частицы распадаются на переходные частицы и продолжают свой путь. Существование значительного числа высоко энергетических пионов во входящем потоке частиц является еще одним доводом в пользу вышеизложенного. Распады первичных частиц будут создавать пионы с очень высокими энергиями. Оценено, что 15% входящих высокоэнергетических частиц являются пионами. Вывод, который логически можно сделать из наблюдений, таков: первичные субатомные частицы обладают той же общей природой, что и известные переходные частицы, а весь феномен космических лучей – это единый процесс, протекающий в виде ряда процессов распада. Это процесс, в котором атом со странными и необычными свойствами сначала превращается в похожие, но менее тяжелые частицы, а затем в продукты, совместимые с локальной окружающей средой.
Соображения, суммированные в предыдущих параграфах, указывают на то, что нынешнее объяснение природы первичных космических лучей некорректно. Они приводят к выводу, что первичные субатомные частицы не являются атомами материальных элементов, как считается сейчас, а представляют собой атомы особого вида, обладающие характеристиками, похожими на характеристики переходных частиц, которые создаются при каких-то необычных условиях, возникающих при вхождении в локальную среду на полной скорости света. Поскольку из теории мы знаем, что происходит непрерывное втекание космических атомов, являющихся атомами особого вида, которые, согласно теории, входят в наше окружение со скоростью света и подвергаются быстрому распаду по способу наблюдаемых переходных частиц, совпадение теоретических и наблюдаемых явлений почти самоочевидно.
Видной характеристикой результатов, полученных из развития следствий постулатов СТОВ, которые, при случае, мы упоминали несколько раз на предыдущих страницах, является то, что они на удивление просто решают давнишние и крайне трудные проблемы. Нигде это не проявляется очевиднее, чем в случае космических лучей, где вывод, что входящие частицы являются атомами из более высокоэнергетического сектора Вселенной, с замечательной легкостью проясняет многие ранее неподатливые проблемы.
Ответы на основные вопросы: Что такое космические лучи и откуда они приходят? появляются автоматически с помощью теоретического открытия сектора Вселенной, которому присущи объекты с наблюдаемыми свойствами космических лучей. Особые свойства, характеризующие составляющие космических лучей и отличающие их от составляющих совокупностей обычной материи, - естественно те, которые труднее всего объяснить на основании современных теорий, пытающихся свести их к материальной системе явлений. Но как только осознается существование космического (высокоэнергетического) сектора, объяснения практически очевидны.
Главные проблемы возникают в связи с энергией. Как констатировал У. Г. Д. Свон: “В современных условиях ни один кусочек материи, ни в какой форме не может содержать достаточно энергии, чтобы обеспечивать энергии космических лучей для своих частиц”.63 Но это лишь одна стороны проблемы с энергией. Проблемы общей вовлеченной энергии намного шире.
“Если космические лучи движутся по прямым линиям, как это делает свет звезд, и обладают той же энергетической плотностью, что и свет звезд, тогда запасы энергии должны быть одинаковыми. Представляется невероятным обнаружить в космическом излучении так много энергии”.64 (Л. Дэвис)