Теоремы свертки и запаздывания




ОПЕРАЦИОННОЕ ИСЧИСЛЕНИЕ

Преобразование Лапласа.

(Пьер Симон Лаплас (1749 – 1825) – французский математик)

Рассмотрим функцию действительного переменного t, определенную при t ³ 0. Будем также считать, что функция f(t)- кусочно - непрерывная, т.е. в любом конечном интервале она имеет конечное число точек разрыва первого рода, и определена на бесконечном интервале (-¥, ¥), но f(t) = 0 при t < 0.

Будем считать, что функция ограничена условием:

Рассмотрим функцию

где p = a + ib – комплексное число.

Определение. Функция F(p) называется изображением Лапласа функции f(t).

Также функцию F(p) называют L – изображением или преобразованием Лапласа.

Обозначается

При этом функция f(t) называется начальной функцией или оригиналом, а процесс нахождения оригинала по известному изображению называется операционным исчислением.

Теорема. (Теорема единственности) Если две непрерывнные функции f(x) и g(x) имеют одно и то же L – изображение F(p), то они тождественно равны.

Определение. Функцией Хевисайда (Оливер Хевисайд (1850 – 1925) – американский физик) называется функция

Свойства изображений.

Если , то справедливы следующие свойства:

 

1) Свойство подобия.

2) Свойство линейности.

3) Смещение изображения.

4) Дифференцирование изображения.

5) Дифференцирование оригинала.

6) Интегрирование изображения.

(Справедливо при условии, что интеграл сходится)

7) Интегрирование оригинала.

Таблица изображений некоторых функций.

Для большинства функций изображение находится непосредственным интегрированием.

Пример. Найти изображение функции f(t) = sint.

Для многих функций изображения посчитаны и приведены в соответствующих таблицах.

f(t) F(p) f(t) F(p)
     
  sinat  
  cosat  
  e-at  
  shat  
  chat  
     
    *

* - при условии, что

Теоремы свертки и запаздывания

Теорема. (теорема запаздывания) Если f(t) = 0 при t < 0, то справедлива формула

где t0 – некоторая точка.

Определение. Выражение называется сверткой функций f1(t) и f2(t) и обозначается f1* f2.

Теорема. (теорема свертки) Преобразование Лапласа от свертки равно произведению преобразований Лапласа от функций f1(t) и f2(t).

Теорема. (Интеграл Дюамеля (Дюамель (1797 – 1872) – французский математик)). Если , то верно равенство

Для нахождения изображений различных функций наряду с непосредственным интегрированием применяются приведенные выще теоремы и свойства.

Пример. Найти изображение функции .

Из таблицы изображений получаем: .

По свойству интегрирования изображения получаем:

Пример. Найти изображение функции .

Из тригонометрии известна формула .

Тогда = .

Операционное исчисление используется как для нахождения значений интегралов, так и для решение дифференциальных уравнений.

Пусть дано линейное дифференциальное уравнение с постоянными коэффициентами.

Требуется найти решение этого дифференциального уравнения, удовлетворяющее начальным условиям:

Если функция x(t) является решением этого дифференциального уравнения, то оно обращает исходное уравнение в тождество, значит функция, стоящая в левой части уравнения и функция f(t) имеет (по теореме единственности) одно и то же изображение Лапласа.

Из теоремы о дифференцировании оригинала { } можно сделать вывод, что

Тогда

Обозначим

 

Получаем:

Это уравнение называется вспомогательным (изображающим) или операторным уравнением.

Отсюда получаем изображение , а по нему и искомую функцию x(t).

Изображение получаем в виде:

Где

Этот многочлен зависит от начальных условий. Если эти условия нулевые, то многочлен равен нулю, и формула принимает вид:

Рассмотрим применение этого метода на примерах.

Пример. Решить уравнение

Изображение искомой функции будем искать в виде:

Находим оригинал, т.е. искомую функцию:

Пример. Решить уравнение

Пример. Решить уравнение:

Изображение искомой функции

Для нахождения оригинала необходимо разложить полученную дробь на элементарные дроби. Воспользуемся делением многочленов (знаменатель делится без остатка на p – 1):

p3 – 6p2 + 11p – 6 p - 1

p3 – p2 p2 – 5p + 6

-5p2 + 11p

-5p2 + 5p

6p - 6

6p - 6

В свою очередь

Получаем:

Тогда:

Определим коэффициенты А, В и С.

Тогда

Приемы операционного исчисления можно также использовать для решения систем дифференциальных уравнений.

Пример. Решить систему уравнений:

Обозначим - изображения искомых функций и решим вспомогательные уравнения:

Решим полученную систему алгебраических уравнений.

Если применить к полученным результатам формулы

то ответ можно представить в виде:

Как видно, гиперболические функции в ответе могут быть легко заменены на показательные.

Пример. Решить систему уравнений

при x(0) = y(0) = 1

Составим систему вспомогательных уравнений:

Если обозначить то из полученного частного решения системы можно записать и общее решение:

При рассмотрении нормальных систем дифференциальных уравнений этот пример был решен традиционным способом Как видно, результаты совпадают.

Отметим, что операторный способ решения систем дифференциальных уравнений применим к системам порядка выше первого, что очень важно, т.к. в этом случае применение других способов крайне затруднительно.

 

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-06-03 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: