СЭС, использующие двигатель Стирлинга




Планы практических занятий

по дисциплине NVIЕ 3321 - Нетрадиционные и возобновляемые источники энергии

специальности «5B071700 –Теплоэнергетика»

 

 

Рассмотрено и утверждено на заседании кафедры «Промышленная теплоэнергетика», протокол № 10 от 28__ 18 __2018г.__

 

 

Зав. кафедрой ПТЭ __________ Р.А.Мусабеков

 

Тема практического занятия №1: Расчет характеристик солнечных электростанций (2 часа)

 

Цель занятия: формирование у студентов знаний об устройстве, тепловых схемах, характеристиках и методах расчета систем гелио-теплоснабжения.

 

План практического занятия:

1. Преобразование солнечной энергии в электрическую энергию. Солнечные электростанции.

2. Основные элементы солнечной электростанции. Схема и принцип действия солнечной электростанции.

 

Методические рекомендации.

Солнечная электростанция — инженерное сооружение, служащее преобразованию солнечной радиации в электрическую энергию. Способы преобразования солнечной радиации различны и зависят от конструкции электростанции.

Все солнечные электростанции (СЭС) подразделяют на несколько типов:

· СЭС башенного типа

· СЭС тарельчатого типа

· СЭС, использующие фотобатареи

· СЭС, использующие параболические концентраторы

· Комбинированные СЭС

· Аэростатные солнечные электростанции

· Солнечно-вакуумные электростанции

СЭС башенного типа изображена на рисунке 1.1.

Рисунок 1.1- СЭС башенного типа (1-гелиостаты;2-башня;3-резервуар с водой; 4- паропровод; 5-паровая турбина; 6- генератор турбины; 7-конденсатор; 8-конденсатный насос)

 

Данные электростанции основаны на принципе получения водяного пара с использованием солнечной радиации. В центре станции стоит башня высотой от 18 до 24 метров (в зависимости от мощности и некоторых других параметров высота может быть больше либо меньше), на вершине которой находится резервуар с водой. Этот резервуар покрашен в чёрный цвет для поглощения теплового излучения. Также в этой башне находится насосная группа, доставляющая пар на турбогенератор, который находится вне башни. По кругу от башни на некотором расстоянии располагаются гелиостаты.

Гелиостат — зеркало площадью в несколько квадратных метров, закреплённое на опоре и подключённое к общей системе позиционирования. То есть, в зависимости от положения солнца, зеркало будет менять свою ориентацию в пространстве. Основная и самая трудная задача — это позиционирование всех зеркал станции так, чтобы в любой момент времени все отраженные лучи от них попали на резервуар. В ясную солнечную погоду температура в резервуаре может достигать 700 градусов. Такие температурные параметры используются на большинстве традиционных тепловых электростанций, поэтому для получения энергии используются стандартные турбины. Фактически на станциях такого типа можно получить сравнительно большой КПД (около 20 %) и высокие мощности.

СЭС тарельчатого типа

Данный тип СЭС использует принцип получения электроэнергии, схожий с таковым у башенных СЭС, но есть отличия в конструкции самой станции. Станция состоит из отдельных модулей. Модуль состоит из опоры, на которую крепится ферменная конструкция приемника и отражателя. Приемник находится на некотором удалении от отражателя, и в нем концентрируются отраженные лучи солнца. Отражатель состоит из зеркал в форме тарелок (отсюда название), радиально расположенных на ферме. Диаметры этих зеркал достигают 2 метров, а количество зеркал — нескольких десятков (в зависимости от мощности модуля). Такие станции могут состоять как из одного модуля (автономные), так и из нескольких десятков (работа параллельно с сетью).

СЭС, использующие фотобатареи изображена на рис.1.2.

СЭС этого типа в настоящее время очень распространены, так как в общем случае СЭС состоит из большого числа отдельных модулей (фотобатарей) различной мощности и выходных параметров. Данные СЭС широко применяются для энергообеспечения как малых, так и крупных объектов (частные коттеджи, пансионаты, санатории, промышленные здания и т. д.). Устанавливаться фотобатареи могут практически везде, начиная от кровли и фасада здания и заканчивая специально выделенными территориями. Установленные мощности тоже колеблются в широком диапазоне, начиная от снабжения отдельных насосов, заканчивая электроснабжением городов.

СЭС, использующие параболоцилиндрические концентраторы [править | править вики-текст]

Принцип работы данных СЭС заключается в нагревании теплоносителя до параметров, пригодных к использованию в турбогенераторе.

Конструкция СЭС: на ферменной конструкции устанавливается параболоцилиндрическое зеркало большой длины, а в фокусе параболы устанавливается трубка, по которой течет теплоноситель (чаще всего масло). Пройдя весь путь, теплоноситель разогревается и в теплообменных аппаратах отдаёт теплоту воде, которая превращается в пар и поступает на турбогенератор.

СЭС, использующие двигатель Стирлинга

Представляют собой СЭС с параболическими концентраторами, у которых в фокусе установлен двигатель Стирлинга. Существуют конструкции двигателей Стирлинга, которые непосредственно преобразуют колебания поршня в электрическую энергию, без использования кривошипно-шатунного механизма. Это позволяет достичь высокой эффективности преобразования энергии. Эффективность таких электростанций достигает 31,25 %[1]. В качестве рабочего тела используется водород или гелий.

Комбинированные СЭС.

Часто на СЭС различных типов дополнительно устанавливают теплообменные аппараты для получения горячей воды, которая используется как для технических нужд, так и для горячего водоснабжения и отопления. В этом и состоит суть комбинированных СЭС. Также на одной территории возможна параллельная установка концентраторов и фотобатарей, что тоже считается комбинированной СЭС.

Солнечно-вакуумные электростанции.

Используют энергию воздушного потока, искусственно создаваемого путем использования разности температур воздуха в приземном слое воздуха, нагреваемого солнечными лучами в закрытом прозрачными стеклами участке, и на некоторой высоте. Состоят из накрытого стеклянной крышей участка земли и высокой башни, у основания которой расположена воздушная турбина с электрогенератором. Вырабатываемая мощность растет с ростом разности температур, которая увеличивается с высотой башни. Путём использования энергии нагретой почвы способны работать почти круглосуточно, что является их серьёзным преимуществом.[2]



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-03 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: