Глава 1.
Определение декартовой системы координат.
Декартова система координат в пространстве определяется точкой и базисом из трех векторов. Точка O называется началом координат. Прямые, проведенныечерез начало координат в направлении базисных векторов, называются осями координат. В трехмерном пространстве они называются осями абсцисс, ординат и аппликат. Оси координат являются числовыми осями с началом в точке O, положительным направлением, совпадающим с направлением соответствующего базисного вектора, и единицей длины, равной длине этого вектора. Координатами точки M называются координаты вектора OM (радиус–вектора) (см. рис. 1). Если базис ортонормированный, то связанная с ним декартова система координат называется прямоугольной.
Поверхность второго порядка — геометрическое место точек, декартовы прямоугольные координаты которых удовлетворяют уравнению вида
в котором по крайней мере один из коэффициентов , , , , , отличен от нуля.
Типы поверхностей второго порядка
Цилиндрические поверхности
Поверхность называется цилиндрической поверхностью с образующей , если для любой точки этой поверхности прямая, проходящая через эту точку параллельно образующей , целиком принадлежит поверхности .
Теорема (об уравнении цилиндрической поверхности).
Если в некоторой декартовой прямоугольной системе координат поверхность имеет уравнение , то — цилиндрическая поверхность с образующей, параллельной оси .
Кривая, задаваемая уравнением в плоскости , называется направляющей цилиндрической поверхности.
Если направляющая цилиндрической поверхности задаётся кривой второго порядка, то такая поверхность называется цилиндрической поверхностью второго порядка.
|
Эллиптический цилиндр: | Параболический цилиндр: | Гиперболический цилиндр: |
Пара совпавших прямых: | Пара совпавших плоскостей: | Пара пересекающихся плоскостей: |
Конические поверхности
Коническая поверхность.
4
Поверхность называется конической поверхностью с вершиной в точке , если для любой точки этой поверхности прямая, проходящая через и , целиком принадлежит этой поверхности.
Функция называется однородной порядка , если выполняется следующее:
Теорема (об уравнении конической поверхности).
Если в некоторой декартовой прямоугольной системе координат поверхность задана уравнением , где — однородная функция, то — коническая поверхность с вершиной в начале координат.
Если поверхность задана функцией , являющейся однородным алгебраическим многочленом второго порядка, то называется конической поверхностью второго порядка.
§ Каноническое уравнение конуса второго порядка имеет вид:
Поверхности вращения
Поверхность называется поверхностью вращения вокруг оси , если для любой точки этой поверхности окружность, проходящая через эту точку в плоскости с центром в и радиусом , целиком принадлежит этой поверхности.
Теорема (об уравнении поверхности вращения).
Если в некоторой декартовой прямоугольной системе координат поверхность задана уравнением , то — поверхность вращения вокруг оси .
Эллипсоид: | Однополостной гиперболоид: | Двуполостной гиперболоид: | Эллиптический параболоид: |
В случае, если , перечисленные выше поверхности являются поверхностями вращения.
|
Гиперболический параболоид
Гиперболический параболоид.
Ввиду геометрической схожести гиперболический параболоид часто называют «седлом».
Уравнение гиперболического параболоида:
При сечении гиперболического параболоида плоскостью поверхность порождает гиперболу.
При сечении гиперболического параболоида плоскостью или поверхность порождает параболу.