Глава 1. Линейная и векторная алгебра




§1 Матрицы
1. Матрица, элементы матрицы Прямоугольная таблица, составленная из чисел, называется матрицейиз строк и столбцов размера . Для обозначения мат­рицы применяются круглые скобки и прописные буквы А, В, С..... Числа составляющие матрицу, называются ее элементами. Горизонтальные ряды матрицы называются строками матрицы, вертикальные - столбцами. А= – матрица размера . 1, 2, 3 – элементы первой строки. 3,5 – элементы третьего столбца. Элемент =3.
2. Симметрическая матрица Если amn = anm, то матрица называется симметрической - симметрическая матрица
3. Квадратная матрица. Главная и побочная диагонали квадратной матрицы. Матрица, у которой число строк равно числу ее столбцов называется квадратной матрицей. При этом число ее строк (столбцов) называется поряд­ком матрицы. В квадратной матрице числа образуют главную диагональ матрицы, а числа побочную диагональ. Матрица есть квадратная матрица третьего порядка. 1,0,7 – элементы главной диагонали.
4. Диагональная матрица Квадратная матрица, у которой все числа, не стоящие на главной диагонали, равны нулю, на­зывается диагональной матрицей. Квадратная матрица вида называется диагональнойматрицей. – диагональная матрица второго порядка.
5. Единичная матрица Диагональная матрица, у которой все элементы главной диагонали равны единице, называется единичной матрицей. Единичную матрицу обозначают про­писной буквой Е Матрица вида , называется единичной матрицей.  
6. Матрица-строка, матрица-столбец. Матрица, состоящая только из одной строки, называется матрицей-строкой, состоящая только из одного столбца матрицей - столбцом. Матрица А=(2 0 5 4) есть матрица – строка. В = – матрица – столбец.
7. Транспониро- ванная матрица Матрица называется транспонированнойпо отношению к матрице А, если столбцы (строки) матрицы являются соответствующими строчками (столбцами) матрицы . ;  
8. Равенство матриц Две матрицы А и В называются рав­ными(A=B), если они имеют одинаковые размеры и равные соответствующие элементы. Если и , то  
9. Сумма матриц Пусть даны матрицы и , имеющие одинаковые размеры . Суммой матриц А и В называется матрица тех же размеров , что и заданные матрицы, элементы которой определяются правилом для всех . Сумма матриц подчиняется переместительному и сочетательному законам, т.е. и Задача. Если то Задача. Даны матрицы ; , найти 2А + В. Решение. , .
10. Умножение матрицы на число Произведением матрицы размеров на число называется матрица тех же размеров, что и матрица А, элементы, которой определяются правилом для всех . Умножение матрицы на число подчиняется закону , где и числа. Задача. Если и , то
11. Умножение матриц Произведением матрицы А размеров на матрицу В размеров называется матрица размеров , элементы которой определяются по формуле (1.4) для всех и всех . Задача. Даны и Так как число столбцов матрицы А равно числу строк матрицы В, то произведение определено и . Задача. Даны , . Решение. Матрица А имеет два столбца, В - две строки; следовательно, определено. .    
§2 Определители
12. Понятие определителя. Определитель второго порядка. Определитель –это число, которое по специальным правилам вычисляется для каждой квадратной матрицы. Определителем второго порядка, соответствующим заданной матрице А, называется число равное Для обозначения определителя используются вертикаль­ные черточки и прописная буква .
13. Определитель третьего порядка Определителем третьего порядка, соответствующим данной квадратной матрице А, называется число Элементы образуют главную диагональ определителя, а элементы побочную диагональ. Задача. Вычислить определитель матрицы Решение. .
14. Минор Минором элемента , где определителя третьего порядка, называется опреде­литель второго порядка, полученный из данного вычеркива­нием й строки и го столбца. Задача. Дано: . Найти . Решение. . Ответ. – 2.
15. Алгебраическое дополнение Алгебраическим дополнением элемента , где , называется минор этого элемен­та, взятый со знаком . где . Задача. Дано: . Найти . Решение. . Ответ. 2.
16.Определители го порядка Определитель го порядка, соответствующий квадратной матрице А, обозначается символом и определяется как число где есть миноры соответствующих элементов т.е. определители го порядка, полученные из данного вычеркиванием его первой строки и соответственно первого, второго,..., го его столбцов. Пример. Вычислить определитель . . . . Значение определителя: .
17. Понятие вырожденной и невырожденной матрицы Обозначим через определитель матрицы и вычислим его. Тогда, если , то матрицу называют неособенной (невырожденной) матрицей, если же , то особенной (вырожденной) матрицей. . . Так как , то матрица невырожденная.
18. Обратная матрица Квадратная матрица порядка называется обратной матрицей для данной матрицы , если где единичная матрица. Всякая неособенная матрица имеет обратную матрицу , определяемую формулой , где есть алгебраические дополнения соответствующих элементов матрицы . Задача. Дана матрица , найти . Решение. det A = 4 - 6 = -2.   M11=4; M12= 3; M21= 2; M22=1 x11= -2; x12= 1; x21= 3/2; x22= -1/2 Таким образом, .  
19. Ранг матрицы Наибольший из порядков миноров данной матрицы, отличных от нуля, называется рангом матрицы. Обозначается или . Очевидно, что , где меньшее из чисел и . Минор, порядок которого определяет ранг матрицы, называется базисным. Задача. Дана матрица . Определить ее ранг. Решение. Имеем , . Минор четвертого порядка составить нельзя. Ответ.
20. Определение ранга матрицы методом элементарных преобразований Простейший способ определения ранга матрицы состоит в приведении ее к ступенчатому виду при помощи последовательности элементарных преобразований. К ним относятся: - умножение строки на произвольное число, отличное от нуля; - прибавление к некоторой строке любой другой строки, умноженной на одно и тоже число; - вычеркивание нулевой строки. Задача. Найти ранг матрицы . Решение. После вычитания первой строки из остальных получаем эквивалентную матрицу, а из последней умноженную на 2, . Поскольку три строки промежуточной матрицы были пропорциональны, то из них можно получить две ненулевые строки, которые мы отбросили. Ясно, что т.к.
21. Совместная и несовместная система линейных уравнений. Определенная и неопределенная система линейных уравнений. Теорема Кронекера – Капелли.   Система, имеющая хотя бы одно решение, называется совместной, имеющая только одно решение определенной, имеющая более одного решения - неопределенной,не имеющая ни одного решения - несовместной. Теорема 1. Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг расширенной матрицы системы равен рангу основной матрицы Теорема 2. Если ранг совместной системы равен числу неизвестных, то система имеет единственное решение. Теорема 3. Если ранг совместной системы меньше числа неизвестных, то система имеет бесчисленное множество решений. Задача. Определить совместность системы линейных уравнений: Ранг A = 2 Ранг . Система несовместна.  
22. Решение системы линейных уравнений по формулам Крамера Теорема. Система из n уравнений с n неизвестными в случае, если определитель матрицы системы не равен нулю, имеет единственное решение и это решение находится по формулам: xi = Di /D, где D = det A, а Di – определитель матрицы, получаемой из матрицы системы заменой столбца i столбцом свободных членов bi. ; ; ; ; ; ; .     Задача. Решить по формулам Крамера систему уравнений Решение. Система содержит одинаковое число уравнений и неизвестных. Вычислим определитель этой системы. Так как ,то решение можно найти по формулам Крамера: Тогда Ответ. {1;2}.  
23. Решение систем линейных уравнений матричным методом Задача. Решить матричным способом систему уравнений Решение. Система содержит одинаковое число уравнений и неизвестных. Вычислим определитель этой системы: . Так как , то система может быть решена матричным способом. Составим матрицы Так как определитель системы , то матрица имеет обратную матрицу , где Вычислим алгебраические дополнения всех элементов Тогда .
24. Решение систем линейных уравнений методом Гаусса. Метод Гаусса может быть применен к системам линейных уравнений с произвольным числом уравнений и неизвестных. Суть метода заключается в последовательном исключении неизвестных. Рассмотрим систему линейных уравнений: Разделим обе части 1–го уравнения на a11 ¹ 0, затем: 1) умножим на а21 и вычтем из второго уравнения; 2) умножим на а31 и вычтем из третье и т.д. Получим: , где , j = 2, 3, …, n+1. , i = 2, 3, …, n; j = 2, 3, …, n+1. Далее повторяем эти же действия для второго уравнения системы, потом – для третьего и т.д. Задача. Решить систему методом Гаусса. Решение. Составим расширенную матрицу системы. Таким образом, исходная система может быть представлена в виде: , откуда получаем: z = 3; y = 2; x = 1.  
25. Вектор. Координаты вектора. Вектором называется направленный отрезок. Пусть точка есть начало вектора, а точка его конец, тогда этот вектор обозначается символом и изображается с помощью стрелки. Если заданы 2 точки в пространстве и , то . Задача. Дано: , . Найти координаты вектора . Решение. , . Ответ. .  
26. Модуль вектора Расстояние между началом и концом вектора называется длиной вектораили его модулем. Модуль вектора обозначается символами Длина вектора в координатах определяется как расстояние между точками начала и конца вектора. Если заданы две точки в пространстве , , то . Если , то . Задача. Дано: , . Найти . Решение. , , . Ответ. .
27. Нулевой вектор Вектор, начало которого совпадает с его концом, называется нулевым и обозначается . Нулевой вектор не имеет определенного направления и его .
28. Понятие коллинеарных векторов Векторы, расположенные на одной прямой или параллельных прямых, называются коллинеарными. Пусть векторы и заданы в координатной форме: ,
 
 

. -условие коллинеарности двух векторов

Задача. При каких и векторы и коллинеарны? Решение. Так как , то . Отсюда находим, что ; .
29. Понятие компланарных векторов Векторы, расположенные на одной плоскости или на параллельных плоскостях, называются компланарными. векторы , , - компланарные.
30. Понятие равенства векторов Два вектора и называются равными, если они коллинеарны, одинаково направлены и имеют одинаковую длину. Равенство векторов записывается в виде . В координатной форме: , если .
31. Противопо- ложный вектор Вектор называется противоположным вектором для вектора , если он ему коллинеарен, имеет одинаковую с длину, но направлен в противоположную сторону. Векторы и называются взаимно-противоположными векторами.
32. Единичный вектор Вектор, длина которого равна единице, называется единичным вектором и обозначается символом . Задача. (Координаты единичного вектора). Определить координаты единичного вектора , если . Решение. , следовательно, .  
33. Сумма векторов Суммой векторов и называется третий вектор , начало которого совпадает с началом вектора , а конец – с концом вектора , при условии, что начало вектора приложено к концу вектора . Пусть векторы и заданы в координатной форме: Сумма векторов: .
 
 

Задача.

Дано: , . Найти .

Решение.

,

.

Ответ. .

 

34. Разность векторов Разностью векторов и называется такой вектор , что . Разность векторов в координатной форме:   Задача. Дано: , . Найти . Решение. , . Ответ. .
35. Деление отрезка в данном отношении Если точка делит отрезок , где , в отношении , т.е. , то ее координаты находятся по формулам , , . В частности, при точка делит отрезок пополам , , . Задача. Даны точки и . На прямой найти точку , делящую отрезок в отношении . Решение. , , . Следовательно, искомая точка . Ответ. .
36. Проекция вектора на ось
 
 

Проекция вектора на ось равна модулю вектора , умноженному на косинус угла между вектором и осью:

.

Задача. Вычислить проекцию вектора на направление вектора . Решение. , Следовательно, . Ответ. .
37. Скалярное произведение векторов Скалярным произведениемвекторов и называется число, равное произведению длин этих сторон на косинус угла между ними. Свойства скалярного произведения: 1) ; 2) , если или , или . 3) ; 4) ; 5) , . Если рассматривать векторы ; в декартовой прямоугольной системе координат, то . Задача. Найти скалярное произведение , если Решение. . Ответ. 336.    
38. Определение угла между векторами. Геометрический смысл скалярного произведения векторов. Так как , то Задача. Даны вершины треугольника и . Определить внутренний угол треуголь­ника при вершине . Решение. Построим векторы и . Имеем . Тогда Ответ.
39.Ортогональность векторов Если то или . Условие называется условием перпендикулярности двух векторов Задача. При каком m векторы и перпендикулярны. Решение. ; . Ответ. .
40. Направляющие косинусы вектора Обозначим через углы, между вектором и осями координат . Тогда из прямоугольных треугольни­ков получим . Задача. Вектор задан координатами своих концов: и . Найти проекции вектора на координатные оси и его направляющие косинусы. Решение. Находим проекции вектора на координатные оси: , , , а модуль вектора . Вычислим направляющие косинусы: ; ; . Ответ. ; ; .
41. Физический смысл скалярного произведения векторов Задача. Вычислить работу по перемещению материальной точки вдоль отрезка, из точки в точку под действием постоянной по величине и направлению силы Решение. Из курса физики известно, что работа , совершаемая при указанных в примере условиях, находится по формуле Так как , то Ответ. 5.
42. Векторное произведение векторов Векторным произведениемвекторов и называется вектор , удовлетворяющий следующим условиям: 1) , где - угол между векторами и ; 2) вектор ортогонален векторам и


Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2018-03-19 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: