Синхронные машины специального назначения




Синхронные двигатели, компенсаторы, специальные синхронные машины.

Синхронные двигатели

В сравнении с асинхронными двигателями они имеют большие преимущества:

1. Могут работать с cosφ=1 и не потреблять реактивную мощность из сети;

2. Максимальный момент СД пропорционален U, а у АД – U2.

3. КПД синхронного двигателя выше, чем у асинхронного за счет меньших потерь;

4. Частота вращения остается независимой от нагрузки.

Однако синхронные двигатели конструктивно сложнее и требуют источник постоянного тока для питания обмотки возбуждения. Кроме того, имеются трудности при пуске.

Различают следующие способы пуска синхронных двигателей:

1. Пуск с помощью постороннего двигателя. Ротор возбужденного двигателя приводится во вращение до частоты близкой к синхронной и с помощью синхронизирующего устройства подключается к трехфазной сети. Затем вспомогательный двигатель отключают.

2. Асинхронный пуск. Это способ предполагает наличие в полюсных наконечниках ротора пусковой обмотки. Невозбужденный синхронный двигатель статорной обмоткой подключается к трехфазной сети переменного тока. Вращающееся магнитное поле индуктирует в пусковой обмотке ротора ЭДС, которая создает в замкнутых стержнях обмотки ротора токи. Взаимодействие этих токов с полем якоря создает момент, приводящий ротор во вращение. При завершении асинхронного пуска (достижении 95% синхронной частоты вращения), подается питание на обмотку возбуждения и двигатель начинает работать синхронно.

Рабочие характеристики синхронного двигателя представляют собой зависимости частоты вращения ротора n, тока в обмотке якоря I1, потребляемой активной мощности P1, коэффициента мощности cosφ1, полезного момента M2 от полезной мощности.

Частота вращения ротора n остается неизменной и не зависит от нагрузки, поэтому график n=f(P2) имеет вид прямой, параллельной оси абсцисс. Полезный момент на валу синхронного двигателя M2=f(P2) имеет вид прямой, выходящей из начала координат. Мощность P1 и ток I1 имеют значения при P2=0, так как существуют потери и ток холостого хода. Вид характеристики cosφ1=f(P2) зависит от величины тока возбуждения двигателя. Если двигатель работает с недовозбуждением, то cosφ1 с ростом P2 уменьшается. При работе с перевозбуждением cosφ1 с ростом P2 увеличивается.

Синхронный компенсатор

Синхронные компенсаторы предназначены для повышения коэффициента мощности сети и поддержания нормального уровня напряжения сети в районах сосредоточения потребительских нагрузок. Нормальным является перевозбужденный режим работы синхронного компенсатора, когда он отдает в сеть реактивную мощность.

Синхронные компенсаторы не имеют приводных двигателей и поэтому сами являются синхронными двигателями, работающими на холостом ходу, при этом из сети потребляя небольшую активную мощность для покрытия своих потерь. Пуск синхронных компенсаторов осуществляется также, как и синхронных двигателей.

Так как у синхронного компенсатора не ставится вопрос статической устойчивости, они выполняются с малым воздушным зазором, что позволяет облегчить обмотку возбуждения и уменьшить стоимость машины.

Синхронные машины специального назначения

Синхронные машины с постоянными магнитами (магнитоэлектрические) не имеют обмотки возбуждения на роторе, а возбуждающий магнитный поток у них создается постоянными магнитами, расположенными на роторе. Статор этих машин обычной конструкции с двух- или трехфазной обмоткой. Применяют эти машины чаще всего в качестве двигателей небольшой мощности. Синхронные генераторы с постоянными магнитами применяют реже, главным образом в качестве автономно работающих генераторов повышенной частоты, малой и средней мощности.

Синхронные магнитоэлектрические двигатели. Эти двигатели получили распространение в двух конструктивных исполнениях: с радиальным и аксиальным расположением постоянных магнитов.

При радиальном расположении постоянных магнитов пакет ротора с пусковой клеткой, выполненный в виде полого цилиндра, закрепляют на наружной поверхности явно выраженных полюсов постоянного магнита. В цилиндре делают межполюсные прорези, предотвращающие замыкание потока постоянного магнита в этом цилиндре.

При аксиальном расположении магнитов конструкция ротора аналогична конструкции ротора асинхронного короткозамкнутого двигателя. К торцам этого ротора прижаты кольцевые постоянные магниты.

Конструкции с аксиальным расположением магнита применяют в двигателях малого диаметра мощностью до 100 Вт; конструкции с радиальным расположением магнитов применяют в двигателях большего диаметра мощностью до 500 Вт и более.

Физические процессы, протекающие при асинхронном пуске этих двигателей, имеют некоторую особенность, обусловленную тем, что магнитоэлектрические двигатели пускают в возбужденном состоянии. Поле постоянного магнита в процессе разгона ротора наводит в обмотке статора ЭДС, частота которой увеличивается пропорционально частоте вращения ротора. Эта ЭДС наводит в обмотке статора ток, взаимодействующий с полем постоянных магнитов и создающий тормозной момент, направленный встречно вращению ротора.

Для обеспечения надежного пуска двигателя необходимо, чтобы минимальный результирующий момент в асинхронном режиме и момент входа в синхронизм были больше момента нагрузки.

Электромагнитные процессы в магнитоэлектрических синхронных двигателях в принципе аналогичны процессам в синхронных двигателях с электромагнитным возбуждением. Однако необходимо иметь в виду, что постоянные магниты в магнитоэлектрических машинах подвержены размагничиванию действием магнитного потока реакции якоря. Пусковая обмотка несколько ослабляет это размагничивание, так как оказывает на постоянные магниты экранирующее действие.

Положительные свойства магнитоэлектрических синхронных двигателей — повышенная устойчивость работы в синхронном режиме и равномерность частоты вращения, а также способность синфазного вращения нескольких двигателей, включенных в одну сеть. Эти двигатели имеют сравнительно высокие энергетические показатели (КПД и cosφ).

Недостатки магнитоэлектрических синхронных двигателей — повышенная стоимость по сравнению с синхронными двигателями других типов, обусловленная высокой стоимостью и сложностью обработки постоянных магнитов, выполняемых из сплавов, обладающих большой коэрцитивной силой (ални, алнико, магнико и др.). Эти двигатели обычно изготовляют на небольшие мощности и применяют в приборостроении и в устройствах автоматики для привода механизмов, требующих постоянства частоты вращения.

Синхронные реактивные двигатели. Отличительная особенность синхронных реактивных двигателей — отсутствие у них возбуждения со стороны ротора. Основной магнитный поток в этом двигателе создается, исключительно за счет МДС обмотки статора. В двух- и в трехфазных СРД эта МДС является вращающейся.

Принцип действия СРД заключается в следующем. При включении обмотки статора в сеть возникает вращающееся магнитное поле. Как только ось этого поля займет положение в пространстве расточки статора, при котором она будет смещена относительно продольной оси невозбужденных полюсов ротора на угол в сторону вращения между полюсами этого поля и выступающими полюсами невозбужденного ротора возникнет реактивная сила магнитного притяжения полюса ротора к полюсу вращающегося поля статора. В СРД применяют асинхронный пуск. Для этого ротор снабжают короткозамкнутой пусковой клеткой.

Простота конструкции и высокая эксплуатационная надежность обеспечили СРД малой мощности широкое применение и устройствах автоматики для привода самопишущих приборов, и устройствах звуко- и видеозаписи и других установках, требующего строгого постоянства частоты вращения.

Гистерезисные двигатели. Работа гистерезисного двигателя основана на действии гистерезисного момента. Под действием внешнего магнитного поля ротор намагничивается. На стороне, обращенной к северному полюсу постоянного магнита, возбуждается южный полюс, а на стороне ротора, обращенной к южному полюсу постоянного магнита, - северный полюс. На ротор начинают действовать силы, направленные радиально к его поверхности. Если полюсы постоянного магнита вращать вокруг ротора, то вследствие явления магнитного запаздывания (гистерезиса) активная часть ротора не будет перемагничиваться одновременно с изменением направления вращающегося магнитного поля и между осью поля ротора и осью внешнего поля появится угол. Явление магнитного запаздывания заключается в том, что частицы ферромагнитного материала (помещенного во внешнее магнитное поле), представляющие собой элементарные магниты, стремятся ориентироваться в соответствии с направлением внешнего поля.

На преодоление сил молекулярного трения расходуется часть подводимой мощности, которая составляет потери на гистерезис. Величина этих потерь зависит от частоты перемагничивания ротора. Применение обычной стали для изготовления ротора не обеспечивает гистерезисного момента достаточной величины. Только магнитно-твердые материалы, например такие, как викаллой, дают возможность получить большой гистерезисный момент. Роторы гистерезисных двигателей обычно делают сборными.

Гистерезисный двигатель может работать с синхронной и асинхронной частотами вращения. Однако работа двигателя в асинхронном режиме неэкономична, так как связана со значительными потерями на перемагничивание ротора, величина которых возрастает с увеличением скольжения.

Достоинства гистерезисных двигателей — простота конструкции, бесшумность и надежность в работе, большой пусковой момент, плавность входа в синхронизм, сравнительно высокий КПД, малое изменение кратности тока от пуска до номинальной нагрузки.

Недостатки гистерезисных двигателей — низкий коэффициент мощности и сравнительно высокая стоимость. Кроме того, при резких колебаниях нагрузки гистерезисные двигатели склонны к качаниям, что создает неравномерность хода (вращения). Объясняется это отсутствием у гистерезисных двигателей пусковой клетки, которая при резких изменениях нагрузки оказывает на ротор успокаивающее (демпфирующее) действие. Наиболее сильные качания наблюдаются у шихтованного ротора, в котором вихревые токи сильно ограничены. Вызываемая качаниями неравномерность вращения ограничивает области применения гистерезисных двигателей.

Шаговые двигатели. Шаговые (импульсные) двигатели используют обычно в качестве исполнительных двигателей, преобразующих электрические сигналы (импульсы напряжения) в угловые или линейные дискретные (скачкообразные) перемещения (шаги). Наибольшее применение шаговые двигатели получили в электроприводах с программным управлением. Различают шаговые двигатели с активным (возбужденным) и реактивным ротором.

Шаговые двигатели с активным ротором имеют обмотку возбуждения или выполнены с постоянными магнитами на роторе; шаговые двигатели с реактивным ротором не имеют обмотки возбуждения, а их ротор выполняют из магнитно-мягкого материала. Обмотку управления шагового двигателя обычно располагают на статоре и делают одно- или многофазной (чаще трех- или четырехфазной). Шаговые двигатели с активным ротором (с обмоткой возбуждения или постоянными магнитами на роторе) позволяют получить, большие значения вращающего момента, а также обеспечивают фиксацию ротора при отсутствии управляющего сигнала.

Быстродействие шаговых двигателей определяется скоростью протекания электромагнитных процессов при переключении управляющих импульсов напряжения с одной фазы статора на другую.

 

Индукторные синхронные машины. Некоторые устройства, например установки индукционного нагрева, гироскопические и радиолокационные устройства, требуют для своей работы переменного тока повышенной частоты, выражаемой сотнями и даже тысячами герц. Получение таких переменных токов посредством синхронных генераторов обычной конструкции сопряжено с непреодолимыми трудностями, так как связано с необходимостью либо увеличения частоты вращения свыше 3000 об/мин, либо чрезмерного увеличения числа полюсов, либо одновременного применения обоих мероприятий. Однако увеличение частоты вращения ведет к возрастанию центробежных усилий в роторе до опасных значений, а увеличение числа полюсов ведет к такому уменьшению полюсного деления, при котором размещение обмотки на статоре становится практически невозможным.

Для получения переменного тока повышенной частоты (до 30 кГц) применяют индукторные генераторы, отличительным признаком которых является то, что за один период магнитный поток в них не меняет своего знака, как в обычных синхронных генераторах, а лишь пульсирует. Пульсирующий поток состоит из двух составляющих: постоянной и переменной, представляющей собой периодически изменяющийся как по значению, так и по направлению магнитный поток. Постоянная составляющая потока не наводит в обмотках ЭДС, а переменная составляющая, сцепляясь с рабочей обмоткой генератора, наводит в ней ЭДС.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-06-03 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: