Автоматические механические коробки передач




Автоматические коробки передач

Основным неудобством пpи использовании механических ступенчатых коробок передач является то, что водителю для переключения передач постоянно при­ходится нажимать на педаль сцепления и перемещать рычаг переключения передач. Это требует от него затрат значительных физических сил, особенно в условиях городского движения или и при управлении автомобилем, работающим с частыми остановками, Для устранения таких неудобств и облегчения работы водителя легкового автомобиля все более широкое применение получают гидромеханические коробки передач. Они выполняют одновременно функции сцепления и коробки передач с автоматическим или полуавтоматическим переключением передач.

Применение гидромеханической передачи на автомобиле позволяет получить следую­щие преимущества:

1. Обеспечение автоматизации переключения передач и отсутствие необходимости иметь пе­даль сцепления.

2. Повышение проходимости автомобиля в условиях бездорожья за счет отсутствия разрыва потока мощности при переключении передач.

3. Повышение долговечности двигателя и агрегатов трансмиссии за счет способности гидро­трансформатора снижать динамические нагрузки.

В то же время как недостаток необходимо отметить потерю мощности и повышение рас­хода топлива за счет более низкого КПД ГМП по сравнению с автомобилем, имеющим меха­ническую коробку передач.

Автоматические коробки передач подразделяются на:

- гидромеханические, переключение передач в которых осуществляется с помощью механических регуляторов;

- электронно-гидромеханические переключение передач в которых осуществляется с помощью электромагнитных клапанов и включающие электронную систему управления;

- вариаторные клиноременные передачи, переключение передач в которых осуществляется с помощью механических регуляторов;

- электронно- вариаторные клиноременные передачи, переключение передач в которых осуществляется с помощью электромагнитных клапанов и включающие электронную систему управления.

Гидромеханическая коробка передач состоит из гидротрансформатора и механической коробки передач. На легковых автомобилях наибольшее распространение получили гидромеханические коробки с плане­тарными механическими коробками. Их преимущества: компактность конструкции, мень­шая металлоемкость и шумность, больший срок службы. К недо­статкам относятся сложность, высокая стоимость, пониженный КПД. Переключение передач в этих коробках производится при помощи фрикционных муфт и ленточных тормозных механизмов. При этом при включении одной передачи часть фрикционных муфт и ленточных тормозных механизмов пробуксовывает, что также снижает их КПД.

Гидротрансформатор (рис. 10.13) представляет собой гидравли­ческий механизм, который размещен между двигателем и механической коробкой передач. Он состоит из трех колес с лопатка­ми: насосного (ведущего), турбинного (ведомого) и реактора. Насосное колесо 3 закреплено на маховике 1 двигателя и образует корпус гидротрансформатора, внутри которого размещены тур­бинное колесо 2, соединенное с первичным валом 5 коробки пе­редач, и реактор 4, установленный на роликовой муфте 6 свободного хода. Внутренняя полость гидротрансформатора на 3/4 своего объема заполнена специальным маслом малой вязкости.

Рис. 10.13. Гидротрансформатор:

а – общий вид; б – схема; 1 – маховик; 2 – турбинное колесо; 3 – насосное колесо; 4 – реактор; 5 – вал; 6 – муфта

 

Каждое колесо имеет наружный и внутренний торцы, между которыми располагаются профилированные лопасти, образующие каналы для протока жидкости. Все колеса гидротрансформатора максимально приближены друг к другу, а вытеснению жидкости препятствуют специальные уплотнения.

При работающем двигателе насосное, колесо вращается вместе с маховиком двигателя. Масло под действием центробежной силы поступает к наружной части насосного колеса, воздействует на лопатки турбинного колеса и приводит его во вращение. Из тур­бинного колеса масло поступает в реактор, который обеспечивает плавный и безударный вход жидкости в насосное колесо и суще­ственное увеличение крутящего момента. Таким образом, масло циркулирует по замкнутому кругу и обеспечивается передача кру­тящего момента в гидротрансформаторе.

Характерной особенностью гидротрансформатора является уве­личение крутящего момента при его передаче от двигателя к пер­вичному валу коробки передач. Наибольшее увеличение крутящего момента на турбинном колесе гидротрансформатора получается при трогании автомобиля с места, при этом коэффициент трансформации может составлять до 2,4. В этом случае реактор непо­движен, так как заторможен муфтой свободного хода. По мере разгона автомобиля увеличивается скорость вращения насосного и турбинного колес. При этом муфта свободного хода расклинивается и реактор начинает вращаться с увеличивающейся скоростью, оказывая все меньшее влияние на передаваемый крутящий момент. После достижения реактором максимальной скорости вращения гидротрансформатор перестает изменять крутящий момент и переходит на режим работы гидромуфты. Таким образом, происходит плавный разгон автомобиля и бесступенчатое изменение крутящего момента.

Гидротрансформатор автоматически устанавливает необходимое передаточное число между коленчатым валом двигателя и к ведущими колесами автомобиля, Это обеспечивается следующим образом: с уменьшением скорости вращения ведущих колес автомобиля при возрастании сопротивления движению возрастает динамический напор жидкости от насоса на турбину, что приводит к росту крутящего момента на турбине, следовательно, на ведущих колесах автомобиля.

КПД гидротрансформатора определяет экономичность его работы. Максимальное значе­ние КПД гидротрансформатора может быть от 0,85 до 0,97, но обычно находится в диапазоне от 0,7 до 0,8. В комплексном гидротрансформаторе на режиме гидромуфты можно получить максимальное значение КПД до 0,97.

Изменение режимов работы гидротрансформатора происходит автоматически. Если уве­личивать нагрузку на выходе из гидротрансформатора, то происходит уменьшение угловой скорости турбины, что приводит к увеличению коэффициента трансформации.

К сожалению, гидротрансформатор имеет малый диапазон передаточных чисел, не обес­печивает движения задним ходом, не разобщает двигатель от трансмиссии (необходима сложная система опорожнения проточных частей от рабочей жидкости). Поэтому за гидро­трансформатором устанавливают специальную планетарную коробку передач, которая компенсирует указанные недостатки.

Планетарная коробка передач включает в себя планетарные механизмы. В простейшем планетарном механизме (рис. 10.14) солнечная шестерня 6, закрепленная на ведущем валу 1, находится в зацеплении с шестернями-сателлитами 3, свободно установленными на своих осях. Оси сателлитов закреплены на водиле 4, жестко соединенном с ведомым валом 5, а сами сателлиты находятся и зацеплении с коронной шестерней 2, имеющей внутренние зубья.

Рис. 10.14. Планетарный механизм:

1 – ведущий вал; 2 – коронная шестерня; 3 – сателлиты; 4 – водило; 5 – ведомый вал; 6 – солнечная шестерня; 7 – тормоз

 

Передача крутящего момента с ведущего вала1на ведомый вал 5 возможна только при заторможенной коронной шестерне 2 при помощи ленточного тормоза 7 или многодискового «мокрого» сцепления. В этом случае при вращении шестерни 6 сателлиты 3, перекатываясь по зубьям неподвижнойшестерни 2, начнут вращаться вокруг своих осей и одновременно через водило 4будут вращать ведомый вал 5. При растормаживании шестерни 2 сателлиты 3, свободно перекатываясь по шестерне 6, будут вращать шестерню 2, а вал 5 будет оставаться неподвижным.

В автоматических коробках передач применяются фрикционные муфты сцепления. Фрикционная муфта сцепления со­стоит комплекта покрытых слоем фрик­ционного материала дисков, прижатых друг к другу через прокладки в виде тонких пластин из гладкого металла (рис. 10.15).


Рис. 10.15. Фрикционная муфта сцепления автоматической коробки передач:

1 – канал подачи рабочей жидкости; 2 – поршень; 3 – кожух муфты; а – выключенное состояние; б – включенное состояние

 

При этом часть фрикционных дисков оснащены внутренними шлицами, часть – наружными. Прижимание дисков друг к другу обеспечивается гидравлическим поршнем 2, для вык­лючения сцепления применяется возвратная пружина. При подаче к поршню давления рабочей жидкости диски плотно прижимаются друг к другу, образуя одно целое (рис. 10.15, б). Как только давление снимается, возвратная пружина отводит поршень назад и диски выводятся из зацепления (рис. 10.15, а). В качестве возвратных пружин могут использоваться винтовые, диафрагменные и гофрированные дисковые пружины.

В качестве примера гидромеханических передач рассмотрим двухступенчатую гидромеханическую коробку передач (рис. 10.16). Она состоит из гидротрансформатора 1, механической планетарной коробки передач с многодисковым фрикционом 3и двумя ленточными тормозными механизмами 2и 4и гидравлической системы управлениях кнопочным переключением передач. Кнопки соответственно означают нейтральное положение, задний ход, первую передачу и движение с автоматическим переключением передач. В двухступенчатой механической коробке передач имеются два одинаковых планетарных механизма 5 и 6.

Рис. 10.16. Гидромеханическая коробка передач:

1 – гидротрансформатор; 2,4 – тормозные механизмы; 3 – фрикцион; 5,6 – планетарные механизмы

 

В нейтральном положении фрикцион 3, а также тормозные механизмы 2 и 4выключены. Трогание автомобиля с места происходит при включенной первой передаче. В этом случае масло под давлением поступает в цилиндр тормозного механизма 2, лента которого затягивается, и солнечная шестерня планетарного механизма 6останавливается.

Если включена кнопка «Движение», то при разгоне автомобиля происходит автоматическое переключение на вторую передачу, что обеспечивается одновременным выключением тормозного механизма 2 и включением фрикциона 3. В этом случае планетарные механизмы 5 и 6 блокируются и вращаются как одно целое.

Для движения автомобиля задним ходом включается только тормозной механизм 4.

В настоящее время автоматические коробки передач имеют электронное управление, что позво­ляет гораздо точнее выдерживать заданные моменты переключения (с точностью до 1 % вместо прежних 6…8 %). Появились дополнительные возможности: по характеру изменения скорости при данной нагрузке на дви­гатель компьютер может вычислить массу автомобиля и ввести соответствующие поправки в алгоритм переключения. Электронное управление предоставило неограниченные возможности для само­диагностики, что позволило корректиро­вать процессы управления в зависимости от многих параметров (от температуры и вязкости жидкости до степени износа фрикционных элементов).

Система автоматического управления обычно состоит из следующих подсистем:

- функционирования (гидравлические насосы, регуляторы давления);

- измерительная, собирающая информацию о параметрах управления;

- управляющая, вырабатывающая управляющие сигналы;

- исполнительная, осуществляющая управление переключением передач, работой двигателя;

- подсистема ручного управления;

- подсистема автоматических защит, предотвращающая возникновение опасных ситуаций.

Основными элементами электронной системы управления являются электронный блок и рычаг управления.

В качестве примера современной АКП с электронным управлением рассмотрим шестиступенчатую коробку передач 09G японского концерна AISIN (рис. 10.17).

АКП состоит из гидротрансформатора, механической планетарной коробки передач с многодисковыми фрикционамии многодисковыми тормозными механизмами, гидравлической системы, систем охлаждения и смазки, электрической системы.

Рис. 10.17. Разрез автоматической шестиступенчатой коробки передач 09G:

К– многодисковые муфты; В – многодисковые тормоза; S – солнечные шестерни; Р – сателлиты; РТ – водило; F – обгонная муфта; 1 – вал турбинного колеса; 2 – ведомая шестерня промежуточной передачи; 3 – жидкостный насос

 

Планетарные ряды объединены по схеме, разработанной Лепеллетье (Lepelletier) (рис. 10.18). Крутящий момент двигателя подводится к одинарному планетарному ряду. Далее он направляется на сдвоенный планетарный ряд Равиньо (Ravigneaux).

Рис. 10.18. Двухредукторная планетарная система Лепеллетье:

а – обычный планетарный редуктор; б – планетарный редуктор Равиньо; 1 – вал турбинного колеса; Р1 – сателлит коронной шестерни Н1; Р2 – сателлит солнечной шестерни 2; Р3 – сателлит коронной шестерни 1; S1 ­­– солнечная шестерня1; S2 - солнечная шестерня 2; S3 - солнечная шестерня 3; Н1 – коронная шестерня 1; Н2 – коронная шестерня 2

 

Управление одинарным планетарным рядом производится посредством многодисковых муфт K1 и K3 и многодискового тормоза B1 (рис. 10.17). Число сателлитов в планетарных рядах выбирается в зависимости от передаваемого крутящего момента.

Сдвоенный планетарный ряд управляется посредством многодисковой муфты K2, многодискового тормоза B2 и обгонной муфты F. В системе управления муфтами предусмотрены устройства динамической компенсации рабочего давления, которые делают работу муфт независящей от частоты вращения. Муфты K1, K2 и K3 служат для подвода крутящего момента к планетарным рядам, а с помощью тормозов B1 и B2, а также обгонной муфты обеспечивается передача реактивных моментов на картер коробки передач.

Давление в рабочих цилиндрах муфт и тормозов изменяется посредством регулирующих клапанов.

Обгонная муфта F представляет собою механизм, который работает параллельно с тормозом.

 

Работа автоматической коробки передач. Первая передача в обычном режиме. Активными механизмами являются многодисковая муфта K1 и обгонная муфта F (рис. 10.19, а).

Вместе с валом турбинного колеса вращается коронная шестерня H1 одинарного планетарного ряда. Эта шестерня приводит во вращение сателлиты P1, которые обкатываются по неподвижной солнечной шестерне S1. При этом приводится во вращение водило PT1.

Так как муфта многодисковая K1 замкнута, крутящий момент передается на солнечную шестерню S3 сдвоенного планетарного ряда. Длинные сателлиты передают крутящий момент на коронную шестерню H2, которая непосредственно связана с ведущей шестерней промежуточной передачи. Водило PT2 опирается при этом на обгонную муфту F.

Учитывая, что первая передача осуществляется с участием обгонной муфты F, при переходе автомобиля на режим движения накатом передача крутящего момента прекращается. При этом ведущими являются колеса автомобиля. Обгонная муфта F свободно вращается в направлении, противоположном ее блокировке, поэтому тормозное действие двигателя не используется.

Рис. 10.19. Работа АКП на первой передаче:

а – в обычном режиме; б – при торможении двигателем; Н – коронные шестерни

Первая передача при торможении двигателем в режиме управления. Активные механизмами являются многодисковая муфта K1 и многодисковый тормоз B2 (рис. 10.19, б). Передача крутящего момента соответствует при этом описанной выше для первой передачи. Торможение двигателем при движении на первой передаче осуществляется с помощью тормоза B2. При этом тормоз B2 блокирует обгонную муфту F и вместе с ней водило PT2. В отличие от обгонной муфты тормоз B2 может блокировать водило PT2 при любом направлении его вращения, что позволяет использовать его и при включении заднего хода.

Вторая передача. Активными механизмами являются многодисковая муфта K1 и многодисковый тормоз B1 (рис. 10. 20, а)

Вал турбинного колеса вращается вместе с коронной шестерней H1 одинарного планетарного ряда. Эта шестерня увлекает за собой сателлиты P1, которые обкатываются по неподвижной солнечной шестерне S1. Вместе с ними вращается водило PT1.

Муфта K1 соединяет водило PT1 с солнечной шестерней S3, передавая крутящий момент на сдвоенный планетарный ряд.

Тормоз B1 удерживает большую солнечную шестерню S2 от вращения. С солнечной шестерни S3 крутящий момент передается на короткие сателлиты P3 и далее на длинные сателлиты P2. При этом длинные сателлиты P2 обкатываются по неподвижной солнечной шестерне S2 и приводят во вращение коронную шестерню H2.

 

Рис. 10.20. Работа АКП на второй и третьей передаче:

а – на второй; б – на третьей

 

Третья передача. Активными механизмами являются многодисковые муфты K1 и К3 (рис. 10,20,б).

Вал турбинного колеса вращается вместе с коронной шестерней H1 одинарного планетарного ряда. Эта шестерня увлекает за собой сателлиты P1, которые обкатываются по неподвижной солнечной шестерне S1. Вместе с ними вращается водило PT1.

Муфта K1 соединяет водило PT1 с солнечной шестерней S3, передавая крутящий момент на сдвоенный планетарный ряд. Муфта K3 также передает крутящий момент на солнечную шестерню S2 сдвоенного планетарного ряда. Одновременное замыкание муфт K1 и K3 приводит к блокированию сдвоенного планетарного ряда. В результате этого крутящий момент передается со сдвоенного планетарного ряда непосредственно на ведомую шестерню промежуточной передачи.

Четвертая передача. Активными механизмами являются многодисковые муфты K1 и К2 (рис. 10,21, а).

Вал турбинного колеса вращается вместе с коронной шестерней H1 одинарного планетарного ряда и наружным барабаном муфты K2. Шестерня H1 увлекает за собой сателлиты P1, которые обкатываются по неподвижной солнечной шестерне S1. Вместе с ними вращается водило PT1.

Муфта K1 соединяет водило PT1 с солнечной шестерней S3, передавая крутящий момент на сдвоенный планетарный ряд. Одновременно крутящий момент передается с вала турбинного колеса на водило PT2 сдвоенного планетарного ряда через замкнутую муфту K2. Длинные сателлиты P2 и находящиеся с ними в зацеплении короткие сателлиты P3 приводят во вращение коронную шестерню H2 через водило PT2.

 

 

Рис. 10.21. Работа АКП на четвертой и пятой передаче:

а – на четвертой; б – на пятой

Пятая передача. Активными механизмами являются многодисковые муфты K1 и К3 (рис.10,21, б).

Вал турбинного колеса вращается вместе с коронной шестерней H1 одинарного планетарного ряда и наружным барабаном муфты K2. Шестерня H1 увлекает за собой сателлиты P1, которые обкатываются по неподвижной солнечной шестерне S1. Вместе с ними вращается водило PT1.

Муфта K3 соединяет водило PT1 с солнечной шестерней S2, передавая крутящий момент на сдвоенный планетарный ряд.

Муфта K2 соединяет вал турбинного колеса с водилом сдвоенного планетарного ряда, передавая на него крутящий момент. Длинные сателлиты P2 вместе с водилом PT2 и солнечной шестерней S2 приводят во вращение коронную шестерню H2.

Шестая передача. Активными механизмами являются многодисковая муфта К2 и тормоз В1 (рис.10,22,а).

Тормоз B1 удерживает солнечную шестерню S2 от вращения. Муфта K2 соединяет вал турбинного колеса с водилом сдвоенного планетарного ряда, передавая на него крутящий момент. Сателлиты P2 обкатываются по неподвижной солнечной шестерне S2, увлекая во вращение коронную шестерню H2.

Муфты K1 и K3 разомкнуты, поэтому одинарный планетарный ряд в передаче крутящего момента не участвует.

Рис. 10.22. Работа АКП на шестой передаче и передаче заднего хода:

а – на шестой; б – на передаче заднего хода

 

 

Передача заднего хода. Активными механизмами являются многодисковая муфта К3 и тормоз В2 (рис.10,22, б).

Вал турбинного колеса вращается вместе с коронной шестерней H1 одинарного планетарного ряда. Шестерня H1 увлекает за собой сателлиты P1, которые обкатываются по неподвижной солнечной шестерне S1. Вместе с ними вращается водило PT1.

Муфта K3 соединяет водило PT1 с солнечной шестерней S2, передавая крутящий момент на сдвоенный планетарный ряд. Тормоз B2 удерживает водило PT2 сдвоенного планетарного ряда. С солнечной шестерни S2 крутящий момент передается на длинные сателлиты P2. Так как водило PT2 неподвижно, крутящий момент передается на коронную шестерню H2, постоянно связанную с валом промежуточной передачи. При этом коронная шестерня H2 вращается в противоположном коленчатому валу направлении.

Муфта блокировки гидротрансформатора (МБГ). Гидротрансформатор работает по принципу гидродинамической передачи. Передача крутящего момента возможна только при наличии разности частот вращения насосного и турбинного колес. Эту разность называют проскальзыванием гидротрансформатора. Проскальзывание приводит к снижению его KПД.МБГ устраняет проскальзывание его колес итем самым способствует снижению расходатоплива.

Для устранения проскальзывания при движении автомобиля с высокими скоростями и малыми нагрузками в АКП применяется муфта блокировки гидротрансформатора, которая может иметь накладки с одной или с двух сторон. В последнем случае обеспечивается более длительная передача больших крутящих моментов. Диск с накладками установлен между корпусом гидротрансформатора и нажимным диском муфты. Промежуточный диск жестко соединен с турбинным колесом. При замыкании муфты крутящий момент передается на промежуточный диск с двух сторон и далее на турбинное колесо.

Управление муфтой производится посредством электрогидравлических распределителей, которые изменяют направление течения рабочей жидкости и ее давление на ту или иную сторону нажимного диска муфты. Передаваемое через управляющую магистраль давление жидкости действует на золотниковые клапаны, которые управляют направлением подачи и давлением рабочей жидкости, поступающей в муфту блокировки.

 

 

Гидравлическая схема управления блокировки гидротрансформатора:

А – муфта блокировки разомкнута; б – муфта блокировки замкнута

 

Система охлаждения жидкости. Охлаждение рабочей жидкости в АКП может осуществляться как в теплообменнике (охладителе), закрепленном непосредственно на картере коробки передач и подключенном к системе охлаждения двигателя, так и с помощью обдуваемом воздухом радиатора, установленного в передней части кузова перед радиатором системы охлаждения двигателя.

Электрогидравлическая система управления коробкой. Системы управления автоматической коробкой передач состоит из электрогидравлического модуля, электронного блока управления, многофункционального датчика, селектора (рис. 10.23).

Рис. 10.23. Электрогидравлическая система управления автоматической коробкой передач:

1 – электромагнитные клапаны регулирующие давление; 2 ­- электромагнитные клапаны переключения передач; 3 – электронный блок управления автоматической коробкой передач; 4 – многофункциональный датчик; 5 – селектор; 6 – валик переключения передач; 7 – место подключения датчика рабочей жидкости; 8 – золотник-распределитель выбора диапазонов

 

Муфты и тормоза (механизмы переключения передач) приводятся в действие гидроцилиндрами, управляемыми посредством золотников-распределителей и электромагнитных клапанов, размещенных в распределительном модуле. Электромагнитные клапаны включаются блоком управления коробкой передач и управляют механизмами переключения передач и муфтой блокировки гидротрансформатора. Они также регулируют давление рабочей жидкости (в главной магистрали, в контурах управления, в гидротрансформаторе и в системе смазки коробки передач).

В системе управления применяются электромагнитные клапаны двух типов: клапаны управления переключением передач, которые могут находиться только в двух состояниях (открыт или закрыт), и регулирующие давление клапаны (с широтно-импульсной модуляцией электропитания). Электромагнитные клапаны переключения передач относятся к двухпозиционным устройствам управления, которые могут быть только открытыми или только закрытыми. Через них жидкость ATF поступает под давлением к золотникам-распределителям, которые открывают или закрывают каналы подвода рабочей жидкости к исполнительным устройствам механизмов переключения передач. Регулирующие клапаны открываются в соответствии с проходящим через их обмотки током, изменяя давление рабочей жидкости в магистрали.

Многофункциональный датчик соединен с рычагом селектора посредством троса. Он вырабатывает электрические сигналы в соответствии с перемещениями рычага селектора и передает их на блок управления автоматической коробкой передач.

В датчике имеются шесть скользящих контактов, а именно:

– четыре контакта для определения позиции рычага селектора;

– один контакт для разрешения пуска двигателя при положениях рычага селектора в позициях "P" и "N";

– один контакт для активизации выключателя ламп заднего хода.

Для управления автоматическими коробками передач используются различные датчики. Основными из них являются:

- датчик частоты вращения на входе коробки передач;

- датчик частоты вращения на выходе коробки передач;

- датчик температуры рабочей жидкости;

- датчик перехода на режим «Кикдаун». Посредством данного датчика производится временное повыше­ние давления в управляющем контуре соответствующего клапа­на переключения передач, что при­водит к увеличению значения скорости переключения на повыша­ющую очередную передачу.Активация функци­онирования данного датчика происходит только при полностью выжатой пе­дали газа.

- датчик или микровыключатель системы Tiptronic.

Система Tiptronic служит для переключения передач от руки с помощью специальных лепестков, расположенных на рулевом колесе (рис. 10.24).

Рис. 10.24. Расположение переключателей системы Tiptronic на рулевом колесе:

1 – переключение на низшую передачу; 2 – переключение на высшую передачу

 

Переключение на высшую передачу осуществляется нажатием лепестка (Tip +) и переключение на низшую передачу нажатием лепестка (Tip –). При воздействии на какой-либо из этих переключателей в процессе работы коробки передач в автоматическом режиме производится перевод ее в режим ручного управления Tiptronic. Вырабатываемые переключателями сигналы непосредственно направляются в блок управления автоматической коробкой передач. Эти переключатели действуют параллельно с рычагом селектора, находящимся в кулисе Tiptronic.

По истечении отсчитываемого таймером определенного промежутка времени после последнего использования переключателей коробка передач вновь переходит на режим автоматического переключения передач.

При управлении автоматической коробкой передач имеется несколько позиций рычага переключения.

В правом секторе рычаг может занимать четыре позиции:

Р – режим парковки;

R – задний ход;

N – нейтральная передача;

D – движение в режиме автоматического переключения передач.

S – спортивный режим

При положении рычага в позиции D программа обеспечивает различные алгоритмы пе­реключения в соответствии с сопротивлением движения, нагрузкой, положением педали акселератора, дорожной ситуацией. Алгоритмы управления соответствуют движению в различных условиях:

- движение с постоянной высокой скоростью;

- городской режим движения;

- горный режим движения;

- режим буксировки;

- движение на поворотах.

При положении рычага получении сигнала в позиции S блок управления сдвигает режимы переключения всех передач в сторону большей частоты вращения коленчатого вала. В результате этого увеличивается интенсивность разгона автомобиля.

При перемещении рычага влево водитель переводит коробку передач в режим ручного пе­реключения. Движением рычага вперед-назад – включение повышающей-понижающей пе­редачи. Такое переключение передач принято называть секвентальным (последовательным). Электронный блок управления является адаптивным, он запоминает манеру вождения водите­ля и корректирует алгоритмы автоматического переключения передач.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2018-03-19 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: