Построение графика функций с помощью преобразования




 

 

Во многих случаях графики функций могут быть построены путем некоторых преобразований уже известных графиков других функций более простого вида. График функций вида:

y=Af(ax+b)+B

может быть получен из графика функций y=f(x) при помощи следующих геометрических преобразований:

1. а) Осевой симметрии относительно оси 0X;

б) осевой симметрии относительно оси 0Y;

в)центральной симметрии относительно начала координат точки 0;

2. а) Параллельного переноса (сдвига) вдоль оси 0X;

б) параллельного переноса (сдвига) вдоль оси 0Y;

3. а) Растяжения (или сжатия) по направлению оси 0X;

б) растяжения (или сжатия) по направлению оси 0Y;

Отметим, что:

1. а) При осевой симметрии относительно оси 0X точка (x; y) переходит в точку (x; -y);

б) При осевой симметрии относительно оси 0Y точка (x; y) переходит в точку (-x; y);

в) При центральной симметрии относительно начала координат (x; y) переходит в точку (-x; -y);

2. а) При параллельном переносе вдоль оси 0X точка (x; y) переходит в точку (x+a; y), где а – некоторое число при этом перенос происходит «вправо», если а>0, и «влево», если а<0;

б)) При параллельном переносе вдоль оси 0Y точка (x; y) переходит в точку (x; y+b), где b – некоторое число при этом перенос происходит «вверх», если b>0, и «вниз», если b<0;

3. а) При растяжении (сжатии) в p раз (p>0, p¹1) вдоль оси 0X относительно 0Y точка (x; y) переходит в точку (px; y);

б) При растяжении (сжатии) в q раз (q>0, q¹1) вдоль оси 0Y относительно 0X точка (x; y) переходит в точку (x; qy);

Применительно к графикам функций эти свойства дают те конкретные геометрические преобразования (табл. 1), использование которых позволяет из известного графика функции y=f(x) строить графики других функций (рис. 1 - 11).

Таблица №1

Рассмотрим несколько примеров построения графиков функций:

 

Пример 1.График функции y=2x-3 получается из графика y=2x при помощи параллельного переноса его вдоль оси 0Y вниз на отрезок длины 3.

Переписав 2x-3 в виде 2(x-3/2), замечаем, что график функции y=2(x-3/2) можно получить из графика функции y=2x при помощи

 

параллельного переноса его вдоль оси 0X вправо на отрезок длины 3/2 (рис. 12).

 

Пример 2. График функции y=4x2 получается из графика функции y= x2 растяжением последнего в 4 раза вдоль оси 0Y относительно оси 0X. Переписав 4x2 в виде (2x)2 , замечаем, что график функции y= x2 можно получить из графика функции y= x2 сжатием последнего в 2 раза вдоль оси 0X относительно оси 0Y (рис. 13).

 

Пример 3. График функции y= 2x-3 получается из графика y= 2x при помощи параллельного переноса его вдоль оси 0X вправо на отрезок длины 3.

Переписав 2x-3 в виде (1/8)*2x , замечаем, что график функции y=(1/8)*2x можно получить из графика функции y=2x сжатием последнего в 8 раз вдоль оси 0X (рис. 14).

 

Пример 4. Построить график функции:

y=1/2arctg(i/4-x)

Решение: построение графика данной функции может быть проведено по следующей схеме (рис. 13):

arctg ® arctg(-x) ® 12arctg(-x) ® 12arctg(-(x-14)).

 

 

Пример 5. Построить график функции:

y=ax2 +bx+c, a¹0.

Решение: квадратный трехчлен ax2+bx+c можно записать в виде a(x+(b/2a))2+(4ac-b2)/4a. Отсюда видно, что график функции y=ax2 +bx+c, получается из параболы y=x2 по следующей схеме:

x2® ax2® ax2+(4ac- b2)4a ® a(x+b(2a))2 +(4ac-b2 )/4a

т.е. для построения графика y=a x2+bx+c надо:

1. Растянуть в |а | раз, если |а | >1 (сжать |1/а | раз, если |а | <1), вдоль оси 0X график функции y=x2 (с возможным последующим отображением полученного графика функции y= | a | x2 относительно оси 0Y, если а<0).

2. Параллельно перенести вдоль оси 0Y на отрезок длины |(4ac- b2)/4a| вверх (вниз) график функции y=ax2 , если величина (4ac- b2)/4a положительна (отрицательна).

3. Полученный после предыдущего преобразования график параллельно перенести вдоль оси 0X на отрезок длины |b/2a| вправо, если b/2a<0, и влево, если b/2a>0.

Пример 6. Построить график функции:

y=| x2-5x+6|

Решение: построим график функции y=x2-5x+6

x2 ®(x-52)2 ®(x-5/2)2 -14= x2 -5x+6

На рисунке изображен график функций y=| x2-5x+6|

 

Иногда функция, график которой должен быть построен, представляется как сумма двух простейших функций, графики которых нам знакомы или легко могут быть построены. В этом случае можно применить приём графического сложения ординат этих графиков (для краткости говорят просто о сложении графиков.) покажем этот приём на примерах.

 

Пример 1. Построить график функций y=x3 +2x+2.

Решение: можно представить данную функцию как сумму функций y=x3 и y=-2x+2, графики которых нам хорошо знакомы. Они изображены на рис. 16 тонкими линиями: это прямая y=-2x+2 и кубическая парабола y=x3. Далее производится суммирование ординат: к ординатам точек кубической параболы прибавляются (с учетом знака!) ординаты точек прямой. При выполнении этой операции удобно пользоваться мерительным циркулем; следует использовать наиболее важные и характерные точки каждого из графиков (в нашем примере – вершину O(0; 0) параболы, точки пересечения прямой с осями и т.д.). Итогом построения служит график, показанный жирной линией. Мы можем много сказать о функции: она имеет максимум и минимум, обращается в нуль в одной точке и т.д. Положение этих характерных точек её графика мы могли бы найти приближенно по чертежу.

 

Пример 2. Построить график функций y=2 ч -2x.

Решение: график данной функции можно получить сложением графиков показательной функции y=2x и линейной функции y=-2x. Это сделано на рис. 17. График пересекает ось OX в точках x=1, x=2, являющихся нулями функции y=2 ч -2x.

Обратим ещё внимание на то, что прямая y=-2x является асимптотой графика (т.к. при x, стремящимся к минус бесконечности, разность между значениями функций y=2 ч -2x и y=-2x стремится к нулю). Из построения видно, что функция имеет точку минимума, найти её точное положение для нас затруднительно.

 

Пример 3. Построить график функций y=x 2 -x 4.

Решение: график может быть построен вычитанием ординат графика y=x 4 из ординат графика y=x 2 (рис. 18). В данном случае полезно дополнить это построение некоторым общим исследованием свойств функции y=x 2 -x 4. Ясно, что функция определена для всех значений x и является четной. Она обращается в нуль при x=0, x= ±1. Как видно из построения графика методом вычитания, следует ожидать у функции наличия двух точек максимума. В данном случае их нетрудно найти; преобразуем выражение функции:

y=x2-x4=1/4-(1/4- x2+x4)=1/4-(x2-1/2) 2 .

Теперь видно, что наибольшее значение y=1/4 функция имеет при х=±1/Ö2. Точка x=0 является точкой минимума данной функции (но значение функции в этой точке, равное нулю, не есть её наименьшее значение).

(книга 2)

Используя геометрические преобразования, рассмотренные выше, в их различных комбинациях, можно построить и графики более сложных функций.

 

Пример1. Построить график функций

y=x| - 1| -2|

Решение: график данной функции можно построить по графику функции y=||x|-1|, если последний параллельно перенести вдоль оси 0Y вниз на отрезок длины 2, а затем эту часть полученного графика функции y=||x| - 1| -2, которая расположена в нижней полуплоскости, симметрично отобразить относительно оси 0X. График функции y=||x| - 1| можно построить по графику функции y=|x| если последний параллельно перенести вдоль оси 0Y вниз на отрезок длинны 1, а затем ту часть полученного графика функции y=|x| - 1, которая расположена в нижней плоскости, симметрично отобразить относительно оси 0X.

Таким образом, график заданной функции может быть построен согласно схеме: x®|x|®|x|-1®||x|-1|® ||x|-1|-2®x|-1|2|


§3. Применение производной

к построению графика функции

 

Графики функций строятся по точкам. Обычно из уравнения y=f(x) находят несколько точек графика функций y=f(x) и соединяют эти точки плавной кривой. Однако при таком методе легко пропустить какие-то особенности графика и допустить ошибку в построении.

 

Для построения графика функции нужно исследовать её свойства. Прежде всего надо найти область определения функции, а потом исследовать функцию на честность и периодичность. Т.к. график четной функции симметричен относительно оси Оу, а график нечетной - относительно начала координат, то для четных и нечетных функций можно ограничится исследованием их свойств лишь при х³0. Если периодическая и Т – её основной период, то можно ограничится исследованием свойств функции на промежутке длинны Т.

 

Далее полезно найти точки пересечения графика с осями координат и определить интервалы знакопостоянства функции. Дело в том, что если, скажем, на интервале (a; b) функция y=f(x) принимает только положительные значения, то график её на этом интервале лежит выше оси Ох. Значит, часть плоскости, лежащею под указанным интервалом, можно заштриховать – там графика нет. Эта часть исследования позволяет указать области, где может лежать график функции. После этого можно изучить поведения функции на границах области определения, установить характер точек разрыва (если они есть), найти асимптоты. Наконец следует найти промежутки возрастания и убывания функции и исследовать её на экстремум.

 

Подводя итог всему сказанному выше, получаем следующую схему исследования свойств функции и построения ее графика.

1. Найти область определения функции,

2. Исследовать функцию на четность.

3. Исследовать функцию на периодичность.

4. Найти точки пересечения графика с осями координат.

5. Определить промежутки знакопостоянства.

6. Исследовать функцию на границах области. Найти асимптоты.

7. Исследовать функцию на экстремум.

8. Составить таблицу значений функции для некоторых значений аргумента.

9. Используя все полученные результаты,построить график функции.

 

Пример 1. Построить график функции y= x4-2 x2-8.

Решение. 1.Функция определена при любом значении x,т.е. D=(f)=R.

2. Так как область определения функции - симметричное множество и f(-x)=f(x), то функция четна.Следовательно график функции симметричен относительно оси Оy и для дальнейшего исследования можно ограничится промежутком [0,+ ]. Но в данном примере мы этого делать не будем.

3Функция непериодическая.

4. Найдем точки пересечения графика с осью Ох. Для этого решим уравнение x4- x2-8=0. Пологая u= x2, получим квадратноеуравнение u2- u-8=0. Пологая u= x2, получим квадратное уравнение u2- u-8=0, имеющее корни 4 и –2. Из уравнения x2=4 находим х=2, х=-2, уравнение x2=-2 не имеет решений. Мы нашли две точки пересечения с осью Ох:(2;0) и (-2;0).

С осью Оу график функции пересекается в точке (0;-8).

5. Найдем интервалы знакопостоянства функции. Заданная функция не прерывна на всей числовой прямой обращается в 0 в точках 2 и –2. Значит, в промежутках (-,-2). (-2;2) и (2;) она сохраняет постоянный знак Чтобы определить знак функции на каждом из указанных промежутков, достаточно взять по одной “пробной” точке из каждого промежутка.

Имеем –100 (-,2), f(-100)=(-100)4-2(-100)2-8>0. Значит, f(x)>0 в промежутке (-; -2). Далее, 0Î(-2; 2), f(0)=-8<0. Поэтому f(x)<0 в промежутке(-2; 2). Наконец, 100Î(2; +), f(100)=f(-100), а выше мы видели, что f(-100)>0. Следовательно, f(100)>0, а потом f(x)>0 в промежутке (2; +).

 

На рисунке представлена геометрическая иллюстрация тех сведений о графике, которыми мы располагаем к настоящему моменту. Заштрихованы те участки координатной плоскости, где графика нет, отмечены известные точки (0; -8), (2; 0), (-2; 0). Это – ответ на вопрос, где расположен график. Дальнейшее исследование позволяет ответить на вопрос, как строить график.

 

6) Изучим поведение функции вблизи границ области определения. Поскольку D(f)=(-; +), такими «границами»можно считать - и +. преобразовав выражение x4-2x2-8 к виду x2-(x2-2-8/ x2), замечаем, что если х®- или х®+, то у®+.

 

Асимптот график не имеет.

 

7) Исследуем функцию на экстремум; имеем

y’=4 x3-4x=4x(x-1)(x+1)

Прировняв производную нулю, находим три корня: 0, 1, -1. Эти точки разбивают числовую прямую на промежутки (-; -1), (-1;0), (0;1), (1; +). Если х>1, то у'>0, а в остальных промежутках знаки чередуются справа на лево, смотри рисунок.

 

Составим таблицу:

x - <x<-1 -1 -1<x<0 0 0<x<1 1 1<x<+
f’(x) -   +   -   +
f(x) Убыв. -9 min Возр. -8 max Убыв. -9 min Возр.

 

Итак, в точках (-1; -9) и (1; -9) функция имеет минимум, а в точке (0; -8) - максимум .

 

8) Составим таблицу значений функции для некоторых значений аргумента, включая те, что были уже отмечены в ходе исследования:

 

X -2 -1       -2,5 2,5
Y   -9 -8 -9   »6 »6

 

9) Строим график функции y= x4-2 x2-8.

Пример 2. Построить график функции y=(x2-1)/x.

 

Решение:

1. Функция не определена только в точке х=0, т.е. D(f)=(-; 0)È(0; +).

 

2. Множество D(f) является симметричным; кроме того f(-х)=((-х)2-1)/-х=-(x2-1)/-х=-f(х). Значит, y=f(x) – нечетная функция. Поэтому график симметричен относительно начала координат и для дальнейшего исследования можно ограничится промежутком (0; +), что мы и сделаем.

3. Функция непериодическая.

4. Найдем точки пересечения графика с положительным лучом оси Ох. Из уравнения (x2-1)/x=0 находим x=1 (корень х=-1 пока не принемаем во внимание). Итак, точка пересичения с осью Ох – точку (1; 0).

С осью Оу график не пересекается, т.к. точка х=0 не принадлежит к области определения функции: 0 D(f).

 

5. Находим промежутки знакопостоянства: (0; 1) и (1; +). В первом из них f(x)<0, во втором f(x)>0/

 

На рисунке представлена геометрическая иллюстрация тех сведений о графике, которыми мы располагаем к настоящему моменту.

 

6. Изучим поведение функции вблизи границ области определения, т.е. вблизи точки ноль и при х ®+. Если х ®0 ( напомним, что мы рассматриваем случай где х>0), то (x2-1)/x®. Если же х ® +, то (x2-1)/x=х-1/х®+.

 

Прямая х=0 является вертикальной асимптотой. Далее, т.к. степень числителя выражается (x2-1)/x на единицу больше степени знаменателя, то должна существовать и наклонная асимптота. В самом деле, поскольку (x2-1)/x=х-1/х и 1/х стремятся к нулю при х ® +, наклонной асимптотой служит прямая у=х.

 

7. Исследуем функцию на экстремум; имеем

y’=((x2-1)/x)’=([-1/x)’=1+1/ x2.

Замечаем, что у’>0при любых х. Значит на луче (0; +) функция возрастает и экстремумов не имеет.

 

8. Составим таблицу значения функции:

x   0.5 0.25      
y   -1.5 -3.75 1.5 2.67 3.75

9. отметив найденные точки на координатной плоскости и учитывая результаты исследования, строим ветвь графика при х>0, смотри рисунок.

Т.к. график функции y=(x2-1)/x, симметричен относительно начала координат, то добавив к построенной ветви симметричную ей относительно начала координат, получим искомый график.


10. Глава 3. ФОРМИРОВАНИЕ УМЕНИЯ

САМОСТОЯТЕЛЬНОЙ РАБОТЫПРИ ИЗУЧЕНИИ ФУНКЦИЙ В ШКОЛЬНОМ КУРСЕ МАТЕМАТИКИ

 

В настоящее время каждый учитель математики ставит перед собой задачу не только сообщить школьникам определенную сумму знаний, наполнить их память некоторым набором фактов и теорем, но и научить учащихся думать, развить их мысль, творческую инициати­ву, самостоятельность. Привитие ученикам навыков самостоятельной работы, умения ориентироваться в поступающей информации, умения самостоятельно пополнять свои знания — это сложный и длительный процесс, требующий специально организованной и целенаправленной работы учителя, в которой, так же как и в любой другой работе. выделяются определенные этапы.

Среди совокупности умений и способов деятельности, которыми овладевают учащиеся при изучении математики, существуют такие, которыми должен прочно овладеть каждый ученик, для того чтобы учебный процесс протекал нормально.

 

Изучению функций и их свойств посвящена значительная часть курса алгебры. И это не случайно. Понятие функции имеет огромное прикладное значение. Умения, приобретаемые школьниками при изучении функций, имеют приклад­ной и практический характер. Они широко используются при изучении, как курса математики, так и других школьных предметов — физики, химии, географии, биологии, находят широкое применение в практической деятельности человека. От того, как усвоены уча­щимися соответствующие умения, зависит успешность усвоения многих разделов школьного курса математики.

При выделении обязательных задач по теме «Функции», следует ориентироваться на то, что обучение в VI—VIII классах представляет собой не завершающий, а промежуточный этап в системе математического образования каждого школьника: На базе полученной им математической подготовки строится его дальнейшее обучение. Поэтому для определения реально необходимого уровня сформированности умений по каждому вопросу, в первую очередь, следует проанализировать характер и уровень ис­пользования этих умений на следующих ступенях обучения. Кроме то­го, важное значение имеет характер применения математических зна­ний учащихся в смежных школьных предметах.

 

Применительно к функциональному материалу естественным представляется проанализировать характер его применения в курсе алгебры и начал анализа, геометрии, а также школьного курса физи­ки. Анализ теоретического и задачного материала этих курсов позво­ляет выделить две группы умений, за формированием которых следует тщательно следить при изучении всех видов конкретных функций,— умения работать с формулой, задающей функцию, и умения работать с графиком этой функции.

 

К умениям работать с формулами относятся "следующие.

Если функции вида y=kx+b, у=k/x, y=ax2+bx+c, у=х3, y=Öx заданы формулами с конкретными значениями пара­метров, то учащиеся должны уметь:

— указать область определения функции;

— вычислить значение функции, соответствующее заданному значению аргумента;

—вычислить значение аргумента, при котором функция при­нимает заданное значение;

— определить, принадлежит ли точка с заданными координатами графику функции,

 

Все эти умения широко используются в разной деятельности учащихся, входят в качестве составных в большое число других умений. Так, например, умение найти значение функции при задан­ном значении аргумента используется при построении графиков функций, нахождении наибольшего и наименьшего значений функ­ции, вычислении пределов функций, интегралов и др. В курсе физики оно используется практически при изучении всех вопросов. Это так называемые вычисления по формулам: длины пройденного пути при равномерном прямолинейном движении, силы тока в проводнике, координаты тела при равномерном и равноускоренном движении и т.. д. Умение записать нужное равенство, зная, что заданная точка принадлежит графику функции (а также графику уравнения), требуется учащимся, например, в курсе геометрии при выводе урав­нений прямой, окружности, плоскости.

Важнейшее значение в функциональной подготовке учащихся - имеет формирование графических умений. Гра­фик — это средство наглядности, широко используемое при изучении многих вопросов в школе.

 

График функции выступает основным опорным образом при формировании целого ряда понятий — возрастания и убывания функции, четности и нечетности, обратимости функции, понятия экстремума. Без четких и сознательных представлений учащихся о графике невозможно привлечение геометрической наглядности при формировании таких центральных понятий курса алгебры и начал анализа, как непрерыв­ность, производная, интеграл. Поэтому заниматься формированием графических представлений в старших классах уже поздно. К этому времени у учащихся должны быть выработаны прочные умения как в построении, так и в чтении графиков функций. Прежде всего уча­щиеся должны уметь свободно строить графики основных функций:

y=kx+b, у=k/x, y=ax2+bx+c, (при конкретных значениях пара метров), у=х3, y=Öx

 

Необходимой базой последующего применения функционального материала являются прочные самостоятельные умения учащихся в чтении графиков функций. Они должны уметь уверенно и свободно отвечать с помощью графика на целый ряд вопросов:,

— по заданному значению одной из переменных х или у опреде­лить значение другой;

— определять промежутки возрастания и убывания функции;

— определять промежутки знакопостоянства;

— для квадратичной функции указывать значение аргумента, при котором функция принимает наибольшее (наименьшее) значение, а также определять это значение.

 

Ученики должны хорошо представлять себе вид графиков некото­рых функций, а именно: у=х, у=—х, у=х2, и уметь без специально­го построения по точкам показать их расположение в координатной плоскости.

 

И наконец, учащиеся должны применять графики изученных пере­численных выше функций для графического решения уравнений, систем уравнений, неравенств вида f(x)³0.

 

Достижение„всеми учащимися выделенных результатов обучения требует специальной ориентации процесса обучения, серьезной и тщательной работы учителя по обеспечению такого усвоения. При этом правильно организованная работа по обучению учащихся ре­шать основные типы задач не только не противоречит тезису о раз­витии самостоятельности учащихся в учебной деятельности, но и способствует такому развитию, закладывает основы обучения школьников обще учебным умениям, умениям самостоятельной ра­боты. Остановимся на некоторых из этих вопросов.

 

Прежде всего, одним из условий эффективности этой работы является своевременное ознакомление учащихся с основными требованиями к их знаниям и умениям. Это может делаться в раз­личной форме. Приступая к изучению какой-либо функции, целесооб­разно сообщить учащимся в самом общем виде, какими умениями они должны овладеть в обязательном порядке. Например, начав изучать функцию вида y=ax2+bx+c, можно указать учащимся, что усвоение этого материала будет оценено положительно только в

том случае, если они научатся строить график квадратичной функции и по графику отвечать на некоторые вопросы. В ходе изучения ма­териала следует уточнить требования, конкретизировав их вторую часть. При этом, если имеется такая возможность, полезно указать номера упражнений, отражающих основные требования.

 

Сформировать прочные умения в построении и чтении графи­ков функций, добиться, чтобы каждый ученик мог выполнять основ­ные виды заданий самостоятельно, можно только при условии выпол­нения учащимися достаточного числа тренировочных упражнений. Но было бы большой ошибкой, если бы эта работа ограничивалась только тренировкой. Обоснованность действий, сознательность при их выполнении, внимание к формированию умений обще учебного характера — непременное условие прочности в овладении умениями. Рассмотрим это на примере отработки умения строить графики функций.

 

Часто приходится наблюдать, особенно в практике работы неопыт­ных учителей, что при формировании этого умения они ограничи­ваются исключительно тренировочными упражнениями, не уделяя должного внимания овладению понятиями, изучению свойств функ­ций. Результатом является то, что при затрате больших сил и времени учащиеся так и не приобретает умения свободно и уверенно строить графики. Проанализируем один пример. В итоговой конт­рольной работе по алгебре за курс VI класса учащимся было предло­жено построить график функции, заданной формулой у=2х—1. Мно­гие учащиеся справились с заданием. Однако среди ошибок были такие, которые свидетельствовали о несформированности не только умения строить график линейной функции, но и строить график вообще. В некоторых работах на рисунке вместо прямой можно было видеть некое подобие параболы или гиперболы. Иногда это была и прямая, но проходящая через другие координатные углы. Ученики, таким образом выполнившие задание, усвоили только одно: для того чтобы построить график функции, надо находить координаты точек, принадлежащих графику. Допущенные в вычислениях ошибки не Позволили им верно выполнить задание, однако проконтролировать себя в ходе его решения они не смогли. Это свидетельствуемо том, что в ходе обучения построению графиков функций акцент делался на механическое повторение способов построения графиков отдельных функций и недооценивалось значение теоретических знаний.

 

При обучении учащихся построению графиков функций следует ориентироваться не на формальное повторение школьниками от­дельных приемов построения графиков, а на сознательное усвоение материала. Необходимо уделять серьезное внимание усвоению соот­ветствующих понятий, изучению свойств функций и формированию на этой основе способов построения графиков.

 

При изучении всех видов функций построение графика полезно проводить по одному и тому же общему плану, добиваясь от учащихся его непременного соблюдения:

1. по формуле распознать вид функции (линейная, квадратичная и т. д.)

2. вспом­нить, что является графиком функции такого вида (прямая, пара­бола и т. д.)

3. выяснить, исходя из формулы, некоторые характерные особенности этого графика (так как k>0, то угол наклона прямой к оси х острый; так как а<0, то ветви параболы направлены вниз;

4. приступать к построению графика по точкам, используя для каждого вида функции свой специфический способ.

 

При выполнении упражнения всем классом, сопровождаю­щемся построением графика на доске, надо непременно требовать от отвечающего ученика вслух комментировать ход решения, выделяя каждый из этих этапов, не пропуская ни один из них. Такая планомер­ная работа приводит к тому, что соблюдение этого плана становится привычным для ученика, и каждый ученик самостоятельно обращает­ся к нему при построении любого графика.

 

Обучаясь построению графиков конкретных функ­ций, ученик обучается составлению определенного плана действий. Приступая к решению поставленной перед ним задачи, ученик не берется за ее выполнение «в лоб», а предварительно намечает исходную идею решения. Иными словами, у него появляется основа для ориентировочных действий. А это, в свою очередь, способствует приобретению навыков самоконтроля. Причем подход к самоконтро­лю здесь не формальный, в отличие от широко распространенного в практике, когда ученикам, уже выполнившим задание, предлагают:

«Проверьте свое решение». В такой ситуации ученик, как правило, не знает, что ему при этом надо делать и в лучшем случае просто прочитывает свое решение еще раз. Однако ему трудно увидеть ошибки и немудрено, что ошибочное решение часто остается неис­правленным. Анализ же условия и обдуманная наметка пути реше­ния на первоначальном этапе более эффективны в плане самоконтро­ля, так как ученик получает возможность контролировать свои действия на каждом этапе выполнения задания. Так, например, установив, что графиком функции является прямая, ученик уже не станет изображать на рисунке параболу. Зная, что угол наклона прямой к оси х должен быть острым, он насторожится, если у него на рисунке получится тупой угол, и это может заставить его пересмотреть некоторые моменты своего решения. Базу для такого самоконтроля создает твердое знание основного теоретического материала, знание свойств функций.

Для прочного усвоения свойств изучаемых функций необходимо включать специальные упражнения, заставляющие учащихся актуа­лизировать имеющиеся у них знания о функциях, выполнять некото­рый перебор знаний с целью выбора нужных в данной ситуации. С этой точки зрения эффективны упражнения на соотнесение графика функции с формулой, задающей эту функцию. Например, после изу­чения свойств линейной функции можно предложить учащимся зада­ние такого типа: «На рисунке изображены графики линейных функ­ций и приведены формулы, задающие эти функции: y=-0,5x+1; у=3; у=2х+2; y=3x. Установите, какая формула соответствует каждому из представленных графиков». Эти упражнения легко варьировать, увеличивая, например, число приводимых формул, пос­ле изучения новых видов функций, включая графики различных функций. Например, предложить учащимся соотнести каждый из гра­фиков, изображенных на рисунке, с формулами:

y=2х—1; у=2х; у=х2; y=3/x; y=х3.

Подобные задания можно выполнять устно при фронтальной ра­боте с классом и письменно в виде самостоятельной работы. В первом случае следует непременно требовать от учащихся обоснования свое­го выбора. Не отнимая много времени на уроке, эти упражнения при­носят существенный эффект и помогают добиться прочных умений. в построении графиков функций.

В заключение отметим, что, хотя работа по обучению учащихся умению самостоятельно решать основные виды задач еще не реша­ет проблемы развития самостоятельности учащихся в целом и ее, конечно, недостаточно для достижения такой цели, все же эта работа является важным этапом в ее достижении. Обучение деятельности по образцу имеет в математике свою специфику, так как в большин­стве случаев такая деятельность не сводится к чисто воспроизводя­щей. Воспроизводится именно способ решения, сама же задача, ее конкретные данные всегда варьируются. При решении любой за­дачи, при выполнении каждого упражнения ученик осуществляет хотя бы элементарный перенос знаний, актуализирует необходимый способ действий, определяет путь решения. Таким образом, целена­правленная и тщательная работа по организации овладения всеми учащимися необходимым набором умений создает основу для пере­хода на более высокий уровень самостоятельности, является необхо­димой базой такого перехода. Кроме того, эта работа не только не противоречит идее развития у учеников общеучебных умений, состав­ляющих основу самостоятельной деятельности каждого ученика, но включает в себя большие возможности в этом плане и, правильно организованная, служит начальным этапом формирования этих умений.


ЛИТЕРАТУРА

 

1. С.И. Демидова, Л.О. Денищева «Самостоятельная деятельность учащихся при обучении математике»-М:,Просвищение-1985г.-192с.

2. Народное образование№6-1990г.,с.62

3. «Математика в школе»№3-1998г.,с.37

4. «Математика в школе»№2-1999г.,с.53

5. Газета «Математика»№33-1999г.

6. Газета «Математика»№16-1998г.

7. В.В. Вавилов, И.И. Мельников, С.Н. Олехник, П.И. Пасеченко «Задачи по математике. Начало анализа: Справочное пособие» - М:, Наука. Гл. ред. Физ. - мат. лит.,1990-608с.

8. Газета «Математика»№39-1997г.

9. В.Г. Болтянский, Ю.В. Сидоров, М.И, Шабунин, А.Б. Марткович «Математика. Лекции, задачи, решение» - Минск, Издательство»Альфа»-1994г.-638с.

10. Алгебра и начало анализа. Учебник для 10-11 кл. сред. шк./ А.Н. Колмагоров, А.М. Абрамов, Ю.П. Дубницин и д.р.: Под ред. А.Н. Колмагорова-2-е изд.-М.:Просвещение, 1991г.-320с.

11. Алгебра; Учебник для 9 класса средней школы-/Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова; Под ред..А. Теляковского.–2-е изд.–М.:Просвещение, 1992г.-271с.

12. Дидактические материалы по алгебре и начале анализа для 11 кл. /Б.М. Ивлев, С.М.Саакян, С.И. Шварцбурд. - М.: Просвещение, 1991г. – 192с.

13. Дидактические материалы по алгебре и начале анализа для 9 кл.: Пособие для учителя /Б.М. Ивлев, С.М.Саакян, С.И. Шварцбурд. - 2-е изд. перераб. - М.: Просвещение, 1987г.

14.Программа общеобразовательных учреждений «Математика» - М; Просвещение, 1994г.

15. «Математика в школе» №6 – 1996г. 21с.

16. «Математика в школе» №5 – 1999г. 2с.

17. А.Д. Мышкис «Лекции по высшей математике» - М;, 1969г.

18. В.В. Зайцев, В.В. Рыжков, М.И. Сканави, «Элементарная математика» - М;, Наука 1976г., 591с.

19. Г.И. Багатырев, О.А. Боковнев, «Математика для подготовительных курсов техникумов»

20. Я.Б. Зельдович «Высшая математика для начинающих и ее приложение к физике.» М.,Физматгиз-1963г.-560с.

21. В.А. Слабодская «Краткий курс высшей математики. Изд. 2-е,переработ. и доп. Учеб. Пособие для втузов. М., Высшая школа-1969г.-544с.

22.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-07-29 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: