С использованием электронной таблицы произвести обработку данных с помощью статистических функций




Даны сведения об учащихся класса, включающие средний балл за четверть, возраст (год рождения) и пол. Определить средний балл мальчиков, долю отличниц среди девочек и разницу среднего балла учащихся разного возраста.

Решение

Заполним таблицу исходными данными и проведем необходимые расчеты. В таблицу будем заносить данные из школьного журнала.

В таблице используются дополнительные колонки, которые необходимы для ответа на вопросы, поставленные в задаче (текст в них записан синим цветом), — возраст ученика и является ли учащийся отличником и девочкой одновременно.

Для расчета возраста использована следующая формула (на примере ячейки G4):

=ЦЕЛОЕ((СЕГОДНЯ()-E4)/365,25)

Прокомментируем ее. Из сегодняшней даты вычитается дата рождения ученика. Таким образом, получаем полное число дней, прошедших с рождения ученика. Разделив это количество на 365,25 (реальное количество дней в году, 0,25 дня для обычного года компенсируется високосным годом), получаем полное количество лет ученика; наконец, выделив целую часть, — возраст ученика.

Является ли девочка отличницей, определяется формулой (на примере ячейки H4):

=ЕСЛИ(И(D4=5;F4="ж");1;0)

Приступим к основным расчетам.

Прежде всего требуется определить средний балл мальчиков. Согласно определению, необходимо разделить суммарный балл мальчиков на их количество. Для этих целей можно воспользоваться соответствующими функциями табличного процессора.

=СУММЕСЛИ(F4:F15;"м";D4:D15)/СЧЁТЕСЛИ(F4:F15;"м")

Функция СУММЕСЛИ позволяет просуммировать значения только в тех ячейках диапазона, которые отвечают заданному критерию (в нашем случае ребенок является мальчиком). Функция СЧЁТЕСЛИ подсчитывает количество значений, удовлетворяющих заданному критерию. Таким образом и получаем требуемое.

Для подсчета доли отличниц среди всех девочек отнесем количество девочек-отличниц к общему количеству девочек (здесь и воспользуемся набором значений из одной из вспомогательных колонок):

=СУММ(H4:H15)/СЧЁТЕСЛИ(F4:F15;"ж")

Наконец, определим отличие средних баллов разновозрастных детей (воспользуемся в расчетах вспомогательной колонкой Возраст):

=ABS(СУММЕСЛИ(G4:G15;15;D4:D15)/СЧЁТЕСЛИ(G4:G15;15)-

СУММЕСЛИ(G4:G15;16;D4:D15)/СЧЁТЕСЛИ(G4:G15;16))

Таким образом, задача полностью решена. На рисунке представлены результаты решения для заданного набора данных.

Варианты заданий

С использованием электронной таблицы произвести обработку данных с помощью статистических функций.

1. Даны сведения об учащихся класса, включающие оценки в течение одного месяца. Подсчитайте количество пятерок, четверок, двоек и троек, найдите средний балл каждого ученика и средний балл всей группы. Создайте диаграмму, иллюстрирующую процентное соотношение оценок в группе.

2. Четверо друзей путешествуют на трех видах транспорта: поезде, самолете и пароходе. Николай проплыл 150 км на пароходе, проехал 140 км на поезде и пролетел 1100 км на самолете. Василий проплыл на пароходе 200 км, проехал на поезде 220 км и пролетел на самолете 1160 км. Анатолий пролетел на самолете 1200 км, проехал поездом 110 км и проплыл на пароходе 125 км. Мария проехала на поезде 130 км, пролетела на самолете 1500 км и проплыла на пароходе 160 км.

Построить на основе вышеперечисленных данных электронную таблицу.

· Добавить к таблице столбец, в котором будет отображаться общее количество километров, которое проехал каждый из ребят.

· Вычислить общее количество километров, которое ребята проехали на поезде, пролетели на самолете и проплыли на пароходе (на каждом виде транспорта по отдельности).

· Вычислить суммарное количество километров всех друзей.

· Определить максимальное и минимальное количество километров, пройденных друзьями по всем видам транспорта.

· Определить среднее количество километров по всем видам транспорта.

3. Создайте таблицу “Озера Европы”, используя следующие данные по площади (кв. км) и наибольшей глубине (м): Ладожское 17 700 и 225; Онежское 9510 и 110; Каспийское море 371 000 и 995; Венерн 5550 и 100; Чудское с Псковским 3560 и 14; Балатон 591 и 11; Женевское 581 и 310; Веттерн 1900 и 119; Боденское 538 и 252; Меларен 1140 и 64. Определите самое большое и самое маленькое по площади озеро, самое глубокое и самое мелкое озеро.

4. Создайте таблицу “Реки Европы”, используя следующие данные длины (км) и площади бассейна (тыс. кв. км): Волга 3688 и 1350; Дунай 2850 и 817; Рейн 1330 и 224; Эльба 1150 и 148; Висла 1090 и 198; Луара 1020 и 120; Урал 2530 и 220; Дон 1870 и 422; Сена 780 и 79; Темза 340 и 15. Определите самую длинную и самую короткую реку, подсчитайте суммарную площадь бассейнов рек, среднюю протяженность рек европейской части России.

5. В банке производится учет своевременности выплат кредитов, выданных нескольким организациям. Известна сумма кредита и сумма, уже выплаченная организацией. Для должников установлены штрафные санкции: если фирма выплатила кредит более чем на 70 процентов, то штраф составит 10 процентов от суммы задолженности, в противном случае штраф составит 15 процентов. Посчитать штраф для каждой организации, средний штраф, общее количество денег, которые банк собирается получить дополнительно. Определить средний штраф бюджетных организаций.

3. Решить текстовую логическую задачу (необходимо использовать не менее четырех переменных)

Решить текстовую логическую задачу:

Болельщики футбольных команд делали прогнозы об итогах соревнований “Турнир четырех”:

— Я уверен, что “Спартак” будет чемпионом, а “ЦСКА” займет последнее место, — сказал Иван.

— Что ты, “Спартак” выше третьего не поднимется, а “ЦСКА” станет вторым, — возразил Сергей.

— Чемпионом будет “Динамо”, а “ЦСКА” войдет в тройку сильнейших, — сделал свой прогноз Петр.

— “Динамо” будет вторым, а вот “Ротор” точно будет последним, — промолвил Алексей.

Выяснилось, что каждый из болельщиков был прав в одном прогнозе и ошибся во втором. Как распределились места, занятые командами?

Решение

Решим задачу путем сопоставления высказываний и опираясь на информацию о том, что одно из них истинно, другое — ложно.

Анализ начнем с последнего высказывания.

Предположим, что высказывание “Ротор” займет 4-е место” истинно. Тогда “Динамо” будет вторым” — ложно (т.е. “Динамо” занимает 1-е или 3-е место).

Пусть истинно высказывание “Динамо” займет первое место”, тогда ложно высказывание “ЦСКА” войдет в тройку сильнейших”, т.е. “ЦСКА” занимает 4-е место, но это место у нас уже занял “Ротор”. Поэтому эта цепочка рассуждений неверна. Следовательно, истинным будет высказывание “ЦСКА” займет 2-е или 3-е место”, а ложным — “Динамо” займет 1-е место”. Для “Динамо” осталась единственная возможность — 3-е место.

Тогда далее высказывание “ЦСКА” станет вторым” истинно, а “Спартак” выше третьего не поднимется” — ложно. Таким образом, для “Спартака” остается единственная возможность — 1-е место, что не противоречит высказываниям Ивана, исходя из того, что одно из них истинно, другое — ложно.

Таким образом, распределение мест: “Спартак” — I, “ЦСКА” — II, “Динамо” — III, “Ротор” — IV.

Если отталкиваться от посылки, что истинно высказывание “Динамо” будет вторым”, ложно “Ротор” будет четвертым”, придем к противоречию (проделать рассуждения самостоятельно”.

Варианты заданий

1. Три подразделения — А, В, С — торговой фирмы стремились получить по итогам года максимальную прибыль. Экономисты высказали следующие предположения:

1) А получит максимальную прибыль только тогда, когда получат максимальную прибыль В и С,

2) Либо А и С получат максимальную прибыль одновременно, либо одновременно не получат,

3) Для того чтобы подразделение С получило максимальную прибыль, необходимо, чтобы и В получило максимальную прибыль.

По завершении года оказалось, что одно из трех предположений ложно, а остальные два истинны. Какие из названных подразделений получили максимальную прибыль?

2. Задача “Валютные махинации”.

В нарушении правил обмена валюты подозреваются четыре работника банка — Антипов (А), Борисов (B), Цветков (С) и Дмитриев (D). Известно:

1) если А нарушил правила обмена валюты, то и В нарушил;

2) если В нарушил, то и С нарушил или А не нарушил;

3) если D не нарушил, то А нарушил, а С не нарушил;

4) если D нарушил, то и А нарушил.

Кто из подозреваемых нарушил правила обмена валюты?

3. Задача “Пятеро друзей”.

Пятеро друзей решили записаться в кружок любителей логических задач: Андрей (А), Николай (N), Виктор (V), Григорий (G), Дмитрий (D). Но староста кружка поставил им ряд условий: “Вы должны приходить к нам так, чтобы:

1) если А приходит вместе с D, то N должен присутствовать обязательно;

2) если D отсутствует, то N должен быть, а V пусть не приходит;

3) А и V не могут одновременно ни присутствовать, ни отсутствовать;

4) если придет D, то G пусть не приходит;

5) если N отсутствует, то D должен присутствовать, но это в том случае, если не присутствует V; если же и V присутствует при отсутствии N, то D приходить не должен, a G должен прийти”.

В каком составе друзья смогут прийти на занятия кружка?

4. Брауну, Джонсу и Смиту предъявлено обвинение в соучастии в ограблении банка. Похитители скрылись на поджидавшем их автомобиле. На следствии Браун показал, что преступники скрылись на синем “Бьюике”; Джонс сказал, что это был черный “Крайслер”, а Смит утверждал, что это был “Форд Мустанг” и ни в коем случае не синий. Стало известно, что, желая запутать следствие, каждый из них указал правильно либо только марку машины, либо только ее цвет. Какого цвета и какой марки был автомобиль?

5. Для полярной экспедиции из восьми претендентов — А, В, С, D, Е, F, G и Н — надо отобрать шестерых специалистов: биолога, гидролога, синоптика, радиста, механика и врача. Обязанности биолога могут выполнять Е и G, гидролога — В и F, синоптика — F и G, радиста — С и D, механика — С и Н, врача — А и D. Хотя некоторые претенденты владеют двумя специальностями, в экспедиции каждый сможет выполнять только одну обязанность. Кого и кем следует взять в экспедицию, если F не может ехать без В, D — без С и без Н, С не может ехать одновременно с G, а A вместе с B?

Билет № 4

Понятие алгоритма: свойства алгоритмов, исполнители алгоритмов. Автоматическое исполнение алгоритма. Способы описания алгоритмов. Основные алгоритмические структуры и их реализация на языке программирования. Оценка эффективности алгоритмов.

Алгоритм — это понятное и точное предписание исполнителю совершить последовательность действий, направленных на решение поставленной задачи или достижение указанной цели.

Термин имеет интересное историческое происхождение. В IX веке великий узбекский математик аль-Хорезми разработал правила арифметических действий над десятичными числами. Совокупность этих правил в Европе стали называть “алгоризм”. Впоследствии слово трансформировалось до известного нам сейчас вида и, кроме того, расширило свое значение: алгоритмом стали называть любую последовательность действий (не только арифметических), которая приводит к решению той или иной задачи. Можно сказать, что понятие вышло за рамки математики и стало применяться в самых различных областях.

Можно выделить три крупных разновидности алгоритмов: вычислительные, информационные и управляющие. Первые, как правило, работают с простыми видами данных (числа, вектора, матрицы), но зато процесс вычисления может быть длинным и сложным. Информационные алгоритмы, напротив, реализуют сравнительно небольшие процедуры обработки (например, поиск элементов, удовлетворяющих определенному признаку), но для больших объемов информации. Наконец, управляющие алгоритмы непрерывно анализируют информацию, поступающую от тех или иных источников, и выдают результирующие сигналы, управляющие работой тех или иных устройств. Для этого вида алгоритмов очень существенную роль играет их быстродействие, т.к. управляющие сигналы всегда должны появляться в нужный момент времени.

Каждый алгоритм — это правила, описывающие процесс преобразования исходных данных в необходимый результат. Заметим, что данное важное свойство в некоторых книгах приводят как определение алгоритма.

Для того чтобы произвольное описание последовательности действий было алгоритмом, оно должно обладать следующими свойствами.

· Дискретность

Процесс решения задачи должен быть разбит на последовательность отдельных шагов, каждый из которых называется командой. Примером команд могут служить пункты инструкции, нажатие на одну из кнопок пульта управления, рисование графического примитива (линии, дуги и т.п.), оператор языка программирования. Наиболее существенным здесь является тот факт, что алгоритм есть последовательность четко выделенных пунктов — такие “прерывные” объекты в науке принято называть дискретными.

· Понятность

Каждая команда алгоритма должна быть понятна тому, кто исполняет алгоритм; в противном случае эта команда и, следовательно, весь алгоритм в целом не могут быть выполнены. Данное требование можно сформулировать более просто и конкретно. Составим полный список команд, который умеет делать исполнитель алгоритма, и назовем его системой команд исполнителя (СКИ).

Требование использовать при составлении алгоритмов только те команды, которые входят в СКИ, связано с тем, что исполнение алгоритма осуществляется формально, без возможности вникнуть в суть команд и проанализировать их.

Одним из таких (вернее, основным из них) “бездушных” исполнителей является ЭВМ. Вообще ЭВМ является универсальным исполнителем алгоритмов. Это связано с тем, что любой алгоритм, составленный для ЭВМ, в конечном итоге транслируется в ее СКИ и, таким образом, становится доступным для исполнения.

· Определенность (детерминированность)

Команды, образующие алгоритм (или, можно сказать, входящие в СКИ), должны быть предельно четкими и однозначными. Их результат не может зависеть от какой-либо дополнительной информации извне алгоритма. Сколько бы раз вы не запускали программу, для одних и тех же исходных данных всегда будет получаться один и тот же результат.

При наличии ошибок в алгоритме последнее сформулированное свойство может иногда нарушаться. Например, если не было предусмотрено присвоение переменной начального значения, то результат в некоторых случаях может зависеть от случайного состояния той или иной ячейки памяти компьютера. Но это, скорее, не опровергает, а подтверждает правило: алгоритм должен быть определенным, в противном случае это не алгоритм.

Определенность также предполагает, что данные, необходимые для выполнения очередной команды алгоритма, получены на одном из предыдущих шагов алгоритма.

· Результативность (конечность)

Результат выполнения алгоритма должен быть обязательно получен, т.е. правильный алгоритм не может обрываться безрезультатно из-за какого-либо непреодолимого препятствия в ходе выполнения. Кроме того, любой алгоритм должен завершиться за конечное число шагов. Большинство алгоритмов данным требованиям удовлетворяют, но при наличии ошибок возможны нарушения результативности.

· Корректность

Любой алгоритм создан для решения той или иной задачи, поэтому нам необходима уверенность, что это решение будет правильным для любых допустимых исходных данных. Указанное свойство алгоритма принято называть его корректностью. В связи с обсуждаемым свойством большое значение имеет тщательное тестирование алгоритма перед его использованием. Как показывает опыт, грамотная и всесторонняя отладка для сложных алгоритмов часто требует значительно больших усилий, чем собственно разработка этих алгоритмов. При этом важно не столько количество проверенных сочетаний входных данных, сколько количество их типов. Например, можно сделать сколько угодно проверок для положительных значений аргумента алгоритма, но это никак не будет гарантировать корректную его работу в случае отрицательной величины аргумента.

· Массовость

Алгоритм имеет смысл разрабатывать только в том случае, когда он будет применяться многократно для различных наборов исходных данных. Например, если составляется алгоритм обработки текстов, то вряд ли целесообразно ограничивать его возможности только русскими буквами — стоит предусмотреть также латинский алфавит, цифры, знаки препинания и т.п. Тем более что такое обобщение особых трудностей не вызывает.

Таковы основные свойства алгоритмов. Если их внимательно проанализировать, то становится очевидным, что исполнитель алгоритма не нуждается в какой-либо фантазии и сообразительности. Более того, для выполнения алгоритма совсем не требуется его понимание, а правильный результат может быть получен путем формального и чисто механического следования содержанию алгоритма.

Из возможности формального исполнения алгоритма следует очень важное следствие: поскольку осознавать содержание алгоритма не требуется, его исполнение вполне можно доверить автомату или ЭВМ. Таким образом, составление алгоритма является обязательным этапом автоматизации любого процесса. Как только разработан алгоритм, машина может исполнять его лучше человека — быстрее и, что очень важно, не ошибаясь.

Основными способами записи алгоритмов являются:

· словесный;

· словесно-формульный;

· на алгоритмическом языке;

· графический (блок-схема);

· на языке программирования высокого уровня.

Основными алгоритмическими структурами (ОАС) являются следование, развилка и цикл. В более сложных случаях используются суперпозиции (вложения) ОАС.

Ниже приведены графические обозначения (обозначения на блок-схемах) ОАС.

На схемах СЕРИЯ обозначает один или несколько любых операторов; ЛВ — логическое выражение (если его значение ИСТИНА, переход происходит по ветви ДА, иначе — по НЕТ). На схеме цикла с параметром использованы обозначения: ПЦ — параметр цикла,
НЗ — начальное значение параметра цикла, КЗ — конечное значение параметра цикла, Ш — шаг изменения параметра цикла.

Простейшие задачи имеют линейный алгоритм решения. Это означает, что такой алгоритм не содержит проверок условий и повторений, действия в нем выполняются последовательно, одно за другим, т.е. при его реализации используется структура “следование”.

Чаще всего алгоритмы предполагают обработку некоторых величин. Величина — это элемент данных с точки зрения их смыслового (семантического) содержания или обработки. При разработке алгоритма данные можно разбить по смыслу на входные — аргументы, выходные — результаты, и промежуточные. Исходные (входные) — это данные, известные перед выполнением задачи, из условия. Выходные данные — результат решения задачи. Переменные, которые не являются ни аргументом, ни результатом алгоритма, а используются только для обозначения вычисляемого промежуточного значения, называются промежуточными. Чаще всего требуется указать имена и типы данных — целый, вещественный, логический и символьный, либо структурированный, базирующийся на одном из названных.

Ветвления играют в алгоритмах очень большую роль, поскольку предусматривают корректную реакцию на самые разнообразные ситуации, возникающие в процессе обработки информации. Благодаря этой структуре алгоритм приобретает способность выбирать один из существующих вариантов работы, наиболее подходящий к сложившейся в данный момент ситуации. В частном случае речь может идти о выполнении или игнорировании при определенных условиях того или иного участка алгоритма.

Значение ветвления в современном программном обеспечении трудно переоценить. Достаточно вспомнить стандартные элементы управления, такие, как меню, радиокнопки, флажки проверки или списки. Именно они дают возможность пользователю чувствовать себя за компьютером свободно и комфортно и выбирать те режимы работы, которые ему нужны.

Приведем также полную форму ветвления в различных алгоритмических языках.

QBasic

IF <ЛВ> THEN операторы ELSE операторы ENDIF

Pascal

IF <ЛВ> THEN оператор ELSE оператор

C

if (<ЛВ>) оператор; else оператор;

Очевидно, что запись отличается лишь незначительными второстепенными деталями. Для получения неполного ветвления ветвь “иначе” разрешается опускать.

Достаточно часто при организации алгоритма решения задачи необходимо одну и ту же определенную последовательность команд выполнить несколько раз подряд. Конечно, самый простой способ — записать эти команды несколько раз друг за другом, и необходимое повторение действий будет организовано. Но как быть в тех случаях, когда количество команд, которые исполняются несколько раз, слишком велико? Или само количество повторений команд огромно? Или вообще неизвестно, а сколько же раз нужно повторить последовательность команд? Решить все эти проблемы можно, если использовать алгоритмическую структуру “цикл”.

Командой повторения, или циклом, называется такая форма организации действий в алгоритме, при которой выполнение одной и той же последовательности команд повторяется до тех пор, пока истинно некоторое логическое выражение.

Для организации цикла необходимо выполнять следующие действия:

· перед началом цикла задать начальное значение параметров (переменных, используемых в логическом выражении, отвечающем за продолжение или завершение цикла);

· внутри цикла изменять переменную (или переменные), которая сменит значение логического выражения, за счет которого продолжается цикл, на противоположное (для того чтобы цикл в определенный момент завершился);

· вычислять логическое выражение — проверять условие продолжения или окончания цикла;

· выполнять операторы внутри цикла;

· управлять циклом, т.е. переходить к его началу, если он не закончен, или выходить из цикла в противном случае.

Различают циклы с известным числом повторений (цикл с параметром) и итерационные (с пред- и постусловием).

Опишем схематично, как выполняется каждый из циклов.

Цикл с предусловием:

а) вычисляется значение логического выражения;

б) если значение логического выражения “истина”, переход к следующему пункту, иначе к п. д);

в) выполняется тело цикла;

г) переход к п. а);

д) конец цикла.

Цикл с постусловием:

а) выполняется тело цикла;

б) вычисляется значение логического выражения;

в) если значение логического выражения “ложь”, переход к п. а), иначе к следующему пункту;

г) конец цикла.

Замечание. Таким образом, цикл с постусловием организован, в частности, в алгоритмических языках Pascal и QBasic. В языке C переход к повторению вычислений, как и в цикле с предусловием, осуществляется в случае истинности логического выражения.

Цикл с параметром:

а) вычисляются значения выражений, определяющие начальное и конечное значения параметра цикла;

б) параметру цикла присваивается начальное значение;

в) параметр цикла сравнивается с конечным значением;

г) если параметр цикла превосходит (при положительном шаге) конечное значение параметра цикла (или, наоборот, меньше конечного значения параметра цикла при отрицательном шаге), переход к п. з), иначе к следующему пункту;

д) выполняется тело цикла;

е) параметр цикла автоматически увеличивается на значение шага;

ж) переход к п. в);

з) конец цикла.

Циклы с предусловием и постусловием в большинстве случаев (за исключением отдельных реализаций алгоритмических языков) являются более универсальными по сравнению с циклом с параметром, поскольку в последнем требуется заранее указать число повторений, в то время как в первых двух это не требуется. Цикл с параметром в любом случае может быть преобразован к циклу с пред- или постусловием. Обратное верно не всегда.

Замечание. В языке C цикл for на самом деле является универсальным циклом с предусловием. В частности, из него можно сделать и описанную форму цикла с параметром.

Примеры использования основных алгоритмических структур и их суперпозиций для составления алгоритмов, а по ним — программ приводятся в многочисленной литературе по программированию, поэтому не будем на них здесь останавливаться.

Наконец, рассмотрим вопрос анализа алгоритмов.

Одну и ту же задачу могут решать много алгоритмов. Эффективность работы каждого из них описывается разнообразными характеристиками. Прежде чем анализировать эффективность алгоритма, нужно доказать, что данный алгоритм правильно решает задачу. В противном случае вопрос об эффективности не имеет смысла. Если алгоритм решает поставленную задачу, то можно посмотреть, насколько это решение эффективно.

При анализе алгоритма определяется количество “времени”, необходимое для его выполнения. Это не реальное число секунд или других промежутков времени, а приблизительное число операций, выполняемых алгоритмом. Число операций и измеряет относительное время выполнения алгоритма. Таким образом, иногда “временем” называют вычислительную сложность алгоритма. Фактическое количество секунд, требуемое для выполнения алгоритма на компьютере, непригодно для анализа, т.к. обычно интересует только относительная эффективность алгоритма, решающего конкретную задачу. Действительно, время, требуемое на решение задачи, — не очень хороший способ измерять эффективность алгоритма, потому что алгоритм не становится лучше, если его перенести на более быстрый компьютер, или хуже, если его исполнять на более медленном.

На самом деле фактическое количество операций алгоритма на тех или иных входных данных не представляет большого интереса и не очень много сообщает об алгоритме. Реально определяется зависимость числа операций конкретного алгоритма от размера входных данных. Можно сравнить два алгоритма по скорости роста числа операций. Именно скорость роста играет ключевую роль, поскольку при небольшом размере входных данных алгоритм А может требовать меньшего количества операций, чем алгоритм В, но при росте объема входных данных ситуация может поменяться на противоположную.

Два самых больших класса алгоритмов — это алгоритмы с повторением и рекурсивные алгоритмы. В основе алгоритмов с повторением лежат циклы и условные выражения; для анализа таких алгоритмов требуется оценить число операций, выполняемых внутри цикла, и число итераций цикла. Рекурсивные алгоритмы разбивают большую задачу на фрагменты и применяются к каждому фрагменту по отдельности. Такие алгоритмы называются иногда “разделяй и властвуй”, и их использование может оказаться очень эффективным.
В процессе решения большой задачи путем деления ее на меньшие создаются небольшие, простые и понятные алгоритмы. Анализ рекурсивного алгоритма требует подсчета количества операций, необходимых для разбиения задачи на части, выполнения алгоритма на каждой из частей и объединения отдельных результатов для решения задачи в целом. Объединяя эту информацию и информацию о числе частей и их размере, можно вывести рекуррентное соотношение для сложности алгоритма. Полученному рекуррентному соотношению можно придать замкнутый вид, затем сравнивать результат с другими выражениями.

Приведем пример оценки сложности алгоритма.

Рассмотрим известный алгоритм сортировки выбором (здесь он записан в виде функции на C++) и оценим его сложность по описанной выше методике.

void v(int n, int a[1000]) {

int i, j, vs, m;

for (i = 0; i < n - 1; i++) {

m = i;

for (j = i + 1; j < n; j++)

if (a[j] < a[m]) m = j;

vs = a[i];

a[i] = a[m];

a[m] = vs;

}

}

Для каждой отдельной операции введем понятие “стоимости” (т.е. времени ее выполнения), в конечном итоге оценим, как зависит “время” выполнения алгоритма от размера сортируемого массива n.

Суммируем

S = c1(n – 1) + c2(n – 1) + c3(n – 1) + c1(n – 1) + c1n2 + c2n2 +
+ c3n2 + c1n2 + c2n2 + c1(n – 1) + c1(n – 1) + c1(n – 1) = (2c1 +
+ 2c2 + c3)n2 + (4c1 + c2 + c3)n – (c1 + c2 + c3)

Таким образом, замечаем, что наибольший вклад в количество операций при больших n вносит величина n2, т.е. сложность алгоритма пропорциональна n2.

Использованные источники информации

1. Семакин И., Залогова Л., Русаков С., Шестакова Л. Информатика: учебник по базовому курсу. М.: Лаборатория Базовых Знаний, 1998. (Глава 12. Введение в
программирование, с. 323–371.)

2. Угринович Н. Информатика и информационные технологии. Учебное пособие для общеобразовательных учреждений. М.: БИНОМ, 2001, 464 с.

3. Информатика. 7–8-е классы / Под ред. Н.В. Макаровой. СПб.: ПитерКом, 1999, 368 с.

4. Шафрин Ю.А. Информационные технологии. М.: Лаборатория Базовых Знаний, 1998, 704 с. (п. 1.6. Понятие об алгоритмах, п. 1.7. Понятие о программировании, с. 53–72).

5. Информатика. Задачник-практикум в 2 т. / Под ред. И.Г. Семакина, Е.К. Хеннера: Т. 1. М.: Лаборатория Базовых Знаний, 1999, 304 с.

6. Основы информатики и вычислительной техники. Пробное учебное пособие для средних учебных заведений / Под ред. А.П. Ершова, В.М. Монахова. М.: Просвещение, 1985. Ч. I, II.

7. Шауцукова Л.З. Информатика: Учебник для
10–11-х классов. М.: Просвещение, 2000 г. (Глава 7. Алгоритмы. Алгоритмизация. Алгоритмические языки.)

7. https://cjmp-science.narod.ru/didakt_i.html — дидактические и методические материалы по программированию и информатике.

8. Макконнелл Дж. Анализ алгоритмов. Вводный курс. М.: Техносфера, 2002, 304 с.

2. Средствами почтовой программы обеспечить автоматическое уведомление отправителя о получении от него письма

Рассмотрим решение поставленной задачи в двух разных почтовых клиентах.

Outlook Express

В данной программе можно настроить получение уведомления о прочтении письма для каждого отправленного сообщения (настройка с помощью меню Сервис > Параметры > Уведомления).

Если уведомление требуется не часто, то эту настройку можно не осуществлять, а запросить уведомление непосредственно при создании сообщения.

Mail.ru

При создании сообщения можно установить извещение о получении этого сообщения.

В других почтовых клиентах и бесплатных почтовых сервисах существует аналогичная возможность.

3. Подсчитать информационный объем графического файла по размеру в пикселях с учетом палитры (заданы количество цветов в палитре и размер рисунка) и того же рисунка в графическом формате со сжатием (задан коэффициент сжатия).

Задан рисунок размером 1024х768 с представлением информации в формате RGB. Определить информационный объем графического файла, хранящего такой рисунок. Вычислить объем файла в том случае, если для хранения этого же рисунка используется формат со сжатием с коэффициентом 0,2.

Решение

В формате RGB для представления каждого пикселя используется три байта (по одному на каждый базовый цвет).

Таким образом, получаем

1024 х 768 х 3 байта = 768 х 3 Кб = 2,25 Мб

При использовании формата со сжатием получаем

2,25 Мб х 0,8 = 1,8 Мб

Билет № 5

1. Язык программирования. Типы данных. Реализация основных алгоритмических структур на языке программирования. Основные этапы разработки программ

Язык программирования — это набор правил для описания алгоритмов решения задачи с помощью ЭВМ.

Как известно (см. билет № 12), одним из базовых принципов архитектуры современных компьютеров до сих пор остается двоичный характер любой используемой информации, причем программа обработки также представляет собой двоичный код. Тем не менее программирование в двоичных кодах — занятие необычайно утомительное и требующее глубокого знания деталей архитектуры компьютера. Для облегчения данного процесса и предназначены языки программирования, используя которые человеку проще описать алгоритм решения задачи. Переход от языковых конструкций к машинным командам осуществляет специальная программа — транслятор языка.

В соответствии с устройством языка (точнее говоря, со степенью его близости машине или человеку) различают языки низкого и высокого уровня. Языки низкого уровня, называемые еще машинными (или машинно-ориентированными) языками, — это языки, которые компьютер воспринимает непосредственно, т.е. языки машинных команд данной модели компьютера. Языки высокого уровня, напротив, ближе к естественному (человеческому); они не зависят от конкретного типа машины. Языком низкого уровня является ассемблер, а языков высокого уровня существует множество: Фортран, Алгол, Бейсик, Паскаль, Си, Ада, Пролог, Лисп, Ява и др.

Один и тот же язык программирования может быть реализован по-разному даже на одном и том же компьютере (пример: GW Basic и QBasic). В синтаксисе различных реализаций допускаются некоторые второстепенные отличия.

Одна из книг выдающегося специалиста по разработке языков программирования Никлауса Вирта (кстати, создателя языков Паскаль, Модула, Эйлер и Оберон) очень емко и глубоко названа “Алгоритмы + структуры данных = программы”. Таким образом, в теории программирования налицо две взаимосвязанные составляющие процесса решения задачи: собственно данные и инструкции по их обработке, т.е. алгоритм.

Рассмотрение начнем с первой составляющей — данных. Одно из главных свойств алгоритма состоит в том, что он по определенным правилам преобразует исходные (входные) данные в выходные (чаще говорят — в результат). При этом в процессе выполнения алгоритма может потребоваться создать некоторые рабочие (промежуточные) данные, которые будут необходимы только в ходе обработки, а после ее завершения потеряют свое значение. Кроме того, для некоторых алгоритмов аргумент может одновременно являться и результатом (например: увеличить все элементы массива вдвое), что приводит к существованию еще одной разновидности данных. Специального термина для них в учебной литературе нет, поэтому приведенное на рисунке название несколько условно.

Описанное нами четкое функциональное разделение данных имеется в любом школьном учебнике, начиная с самого первого [1]. Перечисленные выше категории у А.Г. Кушниренко в [2] названы видами величин. Как определено в [2], “вид величины показывает ее информационную роль в алгоритме”. В конкретном языке программирования каждой величине соответствует своя переменная.

Помимо вида, каждая величина в алгоритме имеет свой тип. Процитируем еще раз учебник [2]: “Тип величины показывает, какие значения может принимать величина и какие операции можно с ней выполнять”.

Кратко перечислим основные типы данных, использующихся в алгоритмических языках. Для вычислений используются различные числовые типы данных. Этот тип возник в ЭВМ самым первым, поэтому неудивительно, что он включает в себя достаточное количество разновидностей. Прежде всего назовем вещественные и целые числа. Последние могут быть как содержащими знак, так и беззнаковыми. В качестве примера вспомним в Турбо Паскале типы integer (значения от –32 768 до 32 767) и word (от 0 до 65 535). Кроме того, конкретные реализации языков программирования чаще всего содержат несколько разновидностей целых и вещественных данных, что связано с различным объемом памяти, выделяемым для них. В качестве самого простого примера назовем вещественные числа обычной и двойной точности в языке Basic. Наконец, для иллюстрации многообразия числовых данных упомянем введенный в Delphi тип currency (валюта), специально предназначенный для максимально точного хранения значений денежных сумм и вычисления процентов от них.

Еще одна категория данных, которая часто используется в программировании, это символьные величины. В зависимости от конкретного языка программирования такие данные могут иметь некоторые не очень существенные особенности, но все они служат для хранения и организации обработки текстовой информации.

Након



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-08-26 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: