Структурная схема трансформаторного БП.




Импульсный БЛОК ПИТАНИЯ

Основная задача - немного систематизировать разрозненные знания и материалы, собрав их в одном месте под единым заголовком. Информация не для спецов, а для тех, кто хочет понять основы принципа действия импульсных блоков питания и немного разобраться в том, как они устроены.

Используемые сокращения: БП – блок питания (радиоэлектронной аппаратуры); ТЭРЦ – теория электро-радио цепей; НСБП – нестабилизированный БП; Uвых – выходное напряжение; СБП – стабилизированный БП; ИБП – импульсный БП; КПД – коэффициент полезного действия: БППТ – блок питания переменного тока; ЗУ – зарядные устройства; КЗ – короткое замыкание; СВ – сетевой выпрямитель; СФ – сетевой фильтр; ВЧП – высокочастотный преобразователь; ШИМ – широтно-импульсная модуляция; const–постоянная величина.

ПЛАН

1. Классификация БП:

1.1. Нестабилизированные БП;
1.2. Стабилизированные БП;
1.3. Импульсные БП;
1.4. БП переменного тока.

2. Сравнительный анализ:

2.1. Структура трансформаторного БП;
2.2. Преимущества и недостатки трансформаторных БП;
2.3. Структура ИБП;
2.4. Преимущества и недостатки ИБП.

3. Схемные решения отдельных элементов ИБП:

3.1. СВи фильтр;
3.2. ВПЧ (ключевой элемент с импульсным трансформатором);
3.3. ШИМ-контроллер и обратная связь.

4. Схемы разных ИБП.
5. Реальный ИБП.
6. ПростейшийИБП – своими руками.

1. Классификация БП
В соответствии с дисциплиной ТЭРЦ (которую я изучал довольно давно), классификация БП предусматривает следующие группы:
1.1. НСБП – это самые распространенные трансформаторные блоки питания. Обеспечивают выходное напряжение постоянного тока. Такой БП обычно содержит сетевой трансформатор и выпрямитель. В НСБП выходное напряжение соответствует номинальному только при номинальном сетевом напряжении и номинальном токе нагрузки. Эти БП пригодны для питания осветительных и нагревательных приборов, электромоторов и любых устройств со встроенным стабилизатором напряжения (например, большинство радиотелефонов и автоответчиков). Они имеют значительный уровень пульсаций Uвыхи не пригодны для питания звуковой техники (радиоприемников, плееров, музыкальных синтезаторов).
1.2. СБП обеспечивают, ясен пень, стабилизированноеUвых постоянного тока. Такой БП обычно содержит сетевой трансформатор, выпрямитель и стабилизатор. Uвых не зависит (или почти не зависит) от изменения сетевого напряжения (в разумных пределах) и от изменения тока нагрузки. В СБП Uвых будет почти одинаковым как на холостом ходу, так и при номинальной нагрузке. Кроме того, для них характерны достаточно малые пульсации напряжения переменного тока на выходе. СБП практически всегда может заменить НСБП. СБП могут не иметь трансформатора.
1.3. ИБП обеспечивают на выходе стабилизированное напряжение постоянного тока. Они имеют следующие преимущества по сравнению с трансформаторными (такими могут быть ЭП первых двух групп): высокий КПД, незначительный нагрев, малый вес и габариты, большой допустимый диапазон сетевого напряжения. Обычно имеется встроенная защита от перегрузки и замыканий на выходе. Важнейшими элементами ИБП являются ключ — устройство, способное за короткое время изменить сопротивление прохождению тока с минимального на максимальное, и наоборот, и интегратор, напряжение на котором не может измениться мгновенно, а плавно растёт по мере накопления им энергии и так же плавно падает по мере отдачи её в нагрузку. Преимущества ИБП растут с увеличением мощности, т.е. для самой маломощной бытовой аппаратуры их применение может быть экономически не оправдано, а блоки питания мощностью от 50 Вт уже существенно дешевле в импульсном варианте. ИБП схемотехнически сложнее трансформаторных.
1.4. БППТ (включая автотрансформаторы) – применяются для питания осветительных и нагревательных электроприборов, а также для тех бытовых приборов, которые содержат внутренний выпрямитель и стабилизатор напряжения (например многие радиотелефоны Siemens, Toshiba, ряд автоответчиков).
1.5. ЗУ – это устройства, предназначенные исключительно для заряда аккумуляторов различных типов. При этом аккумуляторы могут в процессе заряда располагаться как внутри зарядного устройства, так и снаружи. Однако, например, сетевые адаптеры для радиотелефонов, принято относить к БП, т.к., во-первых, аккумуляторы при этом подключаются к устройству заряда не напрямую, а через внутреннюю схему, а во-вторых, кроме заряда аккумуляторов такой блок питания, как правило, обеспечивает и работу от сети.

2. Сравнительный анализ.

Рассмотрим два основных типа БП – трансформаторные (1.1.-1.2.) и импульсные (1.3.). Каждый из них имеет как свои преимущества, так и свои недостатки. Поэтому нельзя точно сказать, какой лучше или хуже, просто каждый тип БП может в большей степени подходить для тех или иных устройств, в зависимости от своих технических характеристик.

Структурная схема трансформаторного БП.


Если рассмотреть трансформаторный БП (их также называют аналоговыми, линейными, параметрическими), то он состоит из понижающего трансформатора 1, где первичная обмотка выполнена из расчета на сетевое напряжение. Этот трансформатор часто называют силовым, и он служит одновременно для гальванической развязки. Преобразование переменного напряжения в пульсирующее однонаправленное (постоянное) напряжение происходит с помощью выпрямителя 2 на полупроводниковых диодах, мостах, сборках. Емкостной фильтр 3 сглаживает пульсирующее напряжение (часто для этого используется конденсатор большой емкости). Кроме этого, в схеме трансформаторного БП может присутствоватьстабилизатор 4 иэлементы защиты от КЗ в нагрузке.
2.2. Преимущества и недостатки трансформаторного БП
Преимущества трансформаторного БП: высокая надежность, простота конструкции, доступность элементной базы, а также низкий уровень создаваемых помех.
Недостатки трансформаторного БП: большие габариты и вес, металлоемкость и низкий КПД (до 50% в лучшем случае!).
Подробнее о таких БП см. в моей статье "Блоки питания" в этом же разделе.
2.3. Структурная схема импульсного БП.

В ИБП входящее переменное напряжение сети сначала выпрямляется полупроводниковым диодами 1 (сборками, мостами), затем емкостной фильтр 2 сглаживает пульсирующее напряжение. Электронный ключ 3 является элементом генератора, вырабатывающего прямоугольные импульсы высокой частоты, которые поступают на импульсный трансформатор 4, который служит одновременно гальванической развязкой. Таким образом, в ИБП снова создаётся переменный ток. На выходе снова стоят выпрямитель 1 и фильтр 2. Для того, чтобы стабилизировать Uвых, в ИБП используется обратная связь 5. Это позволяет удерживать Uвых на относительно постоянном уровне. Управление электронным ключом 3 происходит через ШИМ-контроллер 6. Благодаря такому способу управления Uвых не зависит от возможных колебаний входного (сетевого) напряжения, а также от величины нагрузки.

2.4. Преимущества и недостатки ИБП
Преимущества ИБП: небольшие габариты и вес, широкий диапазон входного напряжения и частоты, высокий КПД (более 90%) и, по сравнению с трансформаторными БП, меньшая стоимость, если брать современную элементную базу. Также к их достоинствам относится и то, что в большинстве современных ИБП присутствуют встроенные цепи защиты от отсутствия нагрузки на выходе и от короткого замыкания.
Высокий КПД ИБП связан с особенностью схемотехники. Основные потери в аналоговом БП – это силовой трансформатор и аналоговый стабилизатор (регулятор). В ИБП нет ни того, ни другого. Вместо сетевого трансформатора используется высокочастотный, а вместо стабилизатора – ключевой элемент. Поскольку основную часть времени ключевые элементы либо включены, либо выключены, потери энергии в импульсном блоке питания минимальны.
Недостатки ИБП: все они представляют собой источник высокочастотных помех, что непосредственно связано с их принципом работы, а также то, что основная часть схемы работает без гальванической развязки от входящего напряжения.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2022-11-01 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: