III. Изучение сейсмической активности.




Сейсмический процесс есть один из видов геотектонических процессов, обладающих свойством автомодельности. Землетрясения являются проявлением самоорганизующегося энергообмена блочно-иерархичной горной породы с внешней средой. Новые представления о сейсмическом процессе требуют радикального изменения методов лабораторного эксперимента. В качестве примера нового подхода к эксперименту обсуждаются результаты одно и двуосного нагружения в режиме постоянства скорости деформации бетонной модели, которая, благодаря наличию имитаторов структуры тектонического разрыва, расчленялась на агрегат блоков. В том же режиме нагружения блочная модель излучала квазипериодические акустические импульсы, сопровождающиеся частичным сбросом нагрузки и скачками локальных деформаций. Эти импульсы предлагается рассматривать как аналоги сильных землетрясений, а их квазипериодическую последовательность как аналог сейсмического процесса.

Методология лабораторного сейсмического эксперимента основывается на существующих представлениях о природе сейсмического процесса. До недавнего времени эти представления были связаны с понятиями сплошности линейной упругости геофизической среды – горной породы.По существу дела понятие о сейсмическом процессе практически не использовалось – ученые сейсмологи занимались исследованием самого землетрясения, трактуя его как образование и развитие трещины, нарушающей сплошность среды.Однако, за последнее десятилетие работы, посвященные новой блочно-иерархической модели геофизической среды, существенно изменили методологическую основу сейсмологии. Сейчас большинство сейсмологов признают, что сейсмический процесс есть один из видов геотектонических процессов, развивающихся во времени и состоящих из последовательности различных этапов, связанных друг с другом и характеризуемых определенной временной последовательностью. Есть основания думать, что сейсмические циклы входят в общую иерархию геофизических циклов, свидетельствуя о том, что автомодельность свойственна широкому классу геолого-геофизических самоорганизующихся процессов.
Естественно, что столь радикальные изменения в понимании задач сейсмологии должны были бы

 

 

-6-

отразиться и на лабораторных исследованиях в этой области. Однако пока что существенных изменений не произошло. По-прежнему здесь царит идея, что землетрясение есть образование трещины в сплошном массиве горной породы, тогда как, по новым представлениям, землетрясения происходят в блочной среде, горной породе, расчлененной трещинами. Горная порода, в которой развивается сейсмологический процесс не разрушается, она остается неизменной сложной блочно-иерархической системой в целом, не меняющей своих свойств. Землетрясения являются одним из проявлений самоорганизующегося процесса энергомассобмена горной породы с окружающей внешней средой. В расчлененную трещинами блочную горную породу извне втекают жидкости и газы,из недр земных поступает энергия в виде тепла, упругости, возникающей при геотектонических движениях и т.п.

Среда, горная порода, приспосабливается в процессе энергомассобмена, самостоятельно изменяя свою структуру, отдельные блоки несколько смещаются друг относительно друга, консолидируются в агрегаты из нескольких (иногда очень многих) блоков, реагирующих на внешние воздействия, как единое целое; наоборот, уже существующие агрегаты блоков могут разрушаться, распадаясь на несколько более мелких. Важным обстоятельством является то, что все эти процессы приспособления, протекающие в геофизической среде, происходят вблизи от некоторого положения равновесия, определяемого неким средним состоянием ее энергоемкости. Это состояние для такого огромного тела, каким является Земля, практически со временем не меняется (постоянно по крайней мере в течение миллионов лет). Об этом свидетельствует постоянство местоположение сейсмических очагов, обнаруживаемое из исторических данных (примерно за 2 тысячелетия).
Сотрудниками Института О.И.Гушенко, А.О.Мострюковым и В.А.Петровым разработан комплекс программ и рассчитаны карты полей напряжений земной коры Альпийского складчатого пояса на участке от Греции до Афганистана и впервые выявлена «блочность» структуры современного поля напряжений, отражающая, по-видимому, сложный процесс переработки тектонического плана региона и, несомненно, определяющая характер сейсмического процесса.
Исходя из изложенного, следует, что новые представления о сейсмическом процессе требуют радикального изменения методов лабораторного сейсмического эксперимента. Не вдаваясь в подробности, которые могут быть разработаны только при выполнении самих экспериментов, остановимся на важнейших условиях. Опыты должны ставиться так, чтобы образец, разрушаясь, не разваливался. Этого можно добиться, либо помещая его в прочную обойму, либо прикладывая усилие к малой части поверхности образца очень большого размера. Можно сказать, что изучение должно начинаться именно тогда, когда образец уже расчленен трещинами.Если, например, изучается образец (уже раздавленный) заключенный в обойму, то, последовательно изменяя нагружение, надо следить за акустическими, электромагнитными и др. эффектами во времени. Возможно, исследовать влияние поровой жидкости при постоянном нагружении и т.д. и т.п. В этих случаях мы имеем дело со средой, структура которой сформировалась в процессе разрушения сплошного образца.
Возможен также другой подход. В обойму закладывается предварительно раздробленный материал. В этом случае, объектом изучения является процесс консолидации (уплотнения) материала и его поведение на последующих стадиях нагружения (деформирования); разрушение, повторная консолидация и т.д.В качестве примера экспериментов по первому варианту предлагаем результаты исследований, проведенных в Обсерватории Борок лабораторией 512 ИФЗ АН на управляемом прессе. В бетонном блоке с размерами 30*20*10 см плексигласовыми пластинами имитировалось часто встречаемая в природе структура сочленения кулис глубинного разлома (вариант тектонической перемычки).
Эксперименты проводились в режиме жесткого одно-двуосного нагружения с постоянной скоростью деформации 10-6 степени сек –1. Каждую секунду фиксировались: величина общей нагрузки (F), сближение пунсонов пресса (Cont.) величина прямо пропорциональная интегральной деформации модели; акустическая эмиссия, смещение берегов имиторованых трещин и локальные деформации в десяти точках модели.
В процессе систематического накопления интегральной деформации бетонный блок за счет роста хвостовых трещин отрыва растрескивался как минимум на четыре одномасштабные части, что

 

 

-7-

контролировалось излучением акустической эмиссии. Как было установлено в эксперименте, и в закритическом состоянии модель (агрегат блоков) излучала акустические импульсы, основной особенностью которых является их регулярная повторяемость. Период повторяемости импульсов в серии экспериментов составлял от 40 до 120 сек. И явно зависел от заданной скорости интегральной деформации. Каждое возникновение импульса сопровождалось скачкообразным смещением берегов имитированных трещин, величины которого в пересчете на деформацию составляли 10-4 степени. Поведение кривых---- и ---- свидетельствует, что перед излучением импульса сопротивление среды резко возрастает. В процессе излучения происходит частичная потеря устойчивости,что подтверждается и скачками деформаций, а затем идет сложный процесс восстановления несущей способности агрегата блокой.Отличие экспериментов при одноосном нагружении заключается в том, что квазипериодическое акустическое излучение возникает раньше, чем при двуосном нагружении, т.е. уже на стадии упругопластического нагружения (Рис.2).Оценка энергии акустических импульсов по методике С.Д.Виноградова 5 дала результат 1.0-10.0 эрг. По формуле М.А.Садовского периоды повторяемости импульсов должны быть в пределах 45-100 сек.,что соответствует данным эксперимента.Следовательно, можно предположить, что зарегистрированное явление находится в общем, ряду свойств блочной среды.
В земных условиях по геологическим и инструментальным данным порядок скорости деформирования земной коры оценивается как 10-6 степени год-1. Т.к. в эксперименте мы задавали скорость 10-6 степени сек-1, то в первом приближении можно считать, что секунда в эксперименте эквивалентна году в природных условиях, т.е. акустические импульсы являются аналогами землетрясений с магнитудами 7 и выше, для которых периоды повторяемости превышают 40 лет. В большинстве случаев после основного импульса наблюдаются серии афтершоков, в редких случаях – форшоки.
Таким образом, можно сделать вывод о том, что именно такие импульсы,их последовательности и стадии деформирования среды в промежутках между вспышками акустической эмиссии и должны быть объектами лабораторных исследований.Здесь важным может оказаться не только слежение за перечисленными выше параметрами, но и детальная расшифровка высокочастотного акустического фона – аналога сейсмического фона регионов.

При всём многообразии геотектонических моделей, построенных в плане классических представлений так называемых «фиксистов» и «мобилистов», фундаментальные вопросы общей геодинамики, геоморфологии и вопросы исторической геологии, в принципе, пока что не получили решения. До сих пор науке неведома природа структур океанических впадин и материков, имеющих разительное отличие друг от друга.

Наряду с тем, существуют вопросы динамического свойства. Учёным совершенно не ясно, куда движутся и движутся ли материки вообще, а если движутся, то за счёт действия каких сил и источников энергии. Широко распространённое предположение о том, что причиной движения земной коры служит тепловая конвекция, по сути, неубедительно, ибо оказалось, что такого рода предположения идут вразрез с основными положениями многих физических законов, экспериментальных данных и многочисленных наблюдений, включая данные космических исследований о тектонике и строении других планет. Реальных схем тепловой конвекции, не противоречащих законам физики, и единого логически обоснованного механизма движения вещества, одинаково приемлемых для условий недр звёзд, планет и их спутников, до сих пор не найдено.

Ниже мы рассмотрим непротиворечивую схему образования и эволюции земной коры, а равно, твёрдых оболочек других планет и их спутников, построенную вне связи и без привлечения механизма тепловой конвекции, наличие которой, фактически, оказывается вовсе необязательным для нормального развития небесных тел любого иерархического уровня.

Из сочетания разного рода атомов химических элементов, спонтанно возникающих в недрах пра-Земляного космогенного вихря (а равно, в недрах иного небесного объекта шарообразной формы), образуется «перегретое» вещество (магма). Вся эта субстанция формируется из «новоявленных» атомов сразу же по выходу их из южного зеркала адиабатической магнитной ловушки, представляющей торцевую часть космогенного вихря, и оттуда данная субстанция начинает свой путь уже в новом своём качестве. Ориентируясь по ходу простирания силовых линий геомагнитного поля, вся масса «перегретого» вещества, постепенно переходит в сферическую часть

 

 

-8-

 

 

магнитного диполя, внедряясь в неё, и здесь, как бы растекаясь по сфере, вещество, удерживаемое магнитным каркасом, медленно течёт от одного геомагнитного полюса к другому, соизмеряясь с

направлением магнитных меридианов. Естественно, что какая-то часть вещества, составляющего сферу, может оказаться вблизи поверхности.

На ранней, до-геологической стадии развития Земли из этой части вещества формировались толщи, относительно быстро остывающей верхней мантии, поверх которой со временем образовались ещё две, значительно более холодные оболочки – кристаллическая кора и перенасыщенная водяным паром атмосфера. Из последней, постепенно конденсируясь, выпадала вода, образуя толщи единого Мирового океана. Таким образом, к концу до-геологической стадии развития Земли, вся поверхность нашей планеты оказалась полностью покрытой водой.

Вместе с тем, в области южного сопла, в районе современного материка Антарктида, продолжалась весьма активная вулканическая деятельность. Целые моря лавы исторгались из недр вихревого образования (ядра) планеты, выдавливаясь на поверхность своеобразного раструба – так называемого южного сопла, и здесь из этой субстанции формировались структуры основания (фундамента), единственного в то время пра-материка, одиноко возвышающегося над уровнем Мирового океана, что сразу же определило существующую и поныне асимметрию полюсов [рис.1]

[ 2] [3].

Именно здесь, у южного полюса, в условиях пространства, ограниченного водой Мирового океана, формировались «докембрийские» толщи кристаллических пород пра-материка, имеющих ряд специфических отличий от структур, образовавшихся в последующее время за пределами поверхности южного сопла. Именно здесь, в чрезвычайно сложных и неповторимых физико-динамических и климатических условиях, соизмеримых с условиями гигантского котла с кипящей кашей, могли сформироваться натёчные формы рельефа, представляющие ныне так называемые докембрийские купола, обширные блюдцеобразные депрессии и иного рода «экзотические» элементы тектоники «докембрия», поражающие ученых своим обилием и неповторимостью облика. Именно здесь, в условиях невиданно высокой магматической активности и повышенной миграции весьма агрессивных горячих газов и высокотермальных водных растворов, насыщенных калием, натрием, радиоактивными элементами и проч., формировались толщи гранитов и «древних» осадочно-метаморфических комплексов – свидетельств яркой и неповторимой эпохи раннего развития континентов Земли, эпохи становления их оснований (фундаментов).

В течение отрезка времени, продолжительностью около 700-800 млн. лет, в области южного полюса Земли поочерёдно наслаивались структуры материковых оснований массивов – лидеров и аутсайдеров. Лидеры – Канадская платформа, Восточно-Сибирская и Восточно-Европейская. Аутсайдеры – все остальные. Завершился процесс – образованием массива Восточная Антарктида [рис. 4].

Одинаковость физико-химических, динамических, климатических и прочих условий, которые существовали в области южного полюса на всём протяжении отрезка времени, пока формировались основания (фундаменты) материковых платформ-лидеров, а затем и аутсайдеров, привело в конечном итоге к одинаковости некоторых геологических признаков, по которым сейчас пытаются идентифицировать так называемые докембрийские комплексы.

Под воздействием двух противоположно направленных широтных сил А и А' (Кориолиса силы и «волн натяжения») и так называемой Непреодолимой силы – В, определяющей межполярное, с юга на север, течение вещества мантии [рис. 1], пра-материк раскалывался на отдельные блоки фундаментов материковых платформ. Вновь формирующиеся структуры отчленялись от южного пра-материка и, по мере того, уплывали вместе с уносимым их течением мантии в направлении северного полюса. Общая последовательность такого движения определялась условием сохранения динамической балансировки вращающегося геоида. Пра-материк при этом раскалывался на три части (ветви), и каждый обломок, в соответствии с принципом обеспечения балансировки планеты, вынужден был двигаться по своей индивидуальной траектории, общий вид которой имеет сходство с линией архимедовой спирали. Таким путём сформировалось три цепочки («ветви») материковых массивов, условно названных – левой, центральной и правой [ рис.2 ] [3 ] [4]. Левую ветвь составили Североамериканская (Канадская) платформа (включая о. Гренландию) и Южноамериканская. Правую ветвь образовали Восточносибирская платформа, Китайско-Корейская и Австралийская. И, наконец, Восточноевропейская, Индостанская и «параллельная» ей

 

-9-

 

Африканская платформы, а так же структуры Восточной Антарктиды – составили одну общую ветвь – центральную.

В южном полушарии траектории движения материковых платформ, составляющих ветви, расходятся веером, следуя от южного полюса в северо-западном направлении (левая ветвь) и на

северо-восток (центральная и правая ветви). В северном полушарии линии всех трёх ветвей сходятся от экватора к северному полюсу, закручиваясь в одном направлении [рис.1 ] [2] [3].

В зависимости от характера простирания участка криволинейной траектории, по которой движется материковый массив, меняется величина угловой скорости и направление нормального (синхронного) вращения массива. А от этого меняется общий вид и характер взаимодействия массива со структурами, его окружающими. Как правило, на стадии изначального разобщения материковых оснований в области южного полюса, их вращение происходит с разной угловой скоростью и в разных направлениях (то есть, происходит взаимодействие по принципу разновеликих вращающихся зубчатых шестерён). А это означает, что наиболее существенные структурные изменения возникают, изначально, в сопредельных областях самих оснований. В результате чего у всех ранее взаимодействующих массивов происходила соответствующая подгонка профиля (выблоковка) смежных кромок и преобразование их до вида противолежащих профилей, то есть, когда выступ одного блока точно входит в выемку другого (см. контуры материковых платформ на рис. [2] [3] [4].

После того, как закончится разобщение материковых оснований каждый массив переходит в режим автономного плавания (межполярного дрейфа). Однако общий характер дрейфа зависит от влияния множества побочных факторов, определяемых действием разного рода законов механики, в том числе законами гидродинамики (движения текучих сред и их взаимодействия с твёрдыми телами). К примеру, общий характер изменения скорости движения основания материкового блока зависит не только от места его положения на геосфере, но и от величины общей массы материка, от размеров частей его составляющих, от величины «корней» (погружённой части материка, определяющей величину «парусности») дрейфующего массива и т.д.

Вместе с тем от величины скорости дрейфа («поступательного» движения) зависит величина угловой скорости собственного (синхронного) вращения дрейфующего массива. А направление такого вращения зависит от принадлежности массива к конкретной ветви материковых платформ, то есть от характера простирания их траекторий, и т.д. В свою очередь характером движения и вращения материкового массива, определяется процесс сжатия прибрежных структур и образования горных складок вдоль активной (фронтальной) кромки периметра блока. И, одновременно, определяется процесс образования структурных нарушений, связанных с растяжением или сдвигом (сколы, смещения, разрывы, и т.д.), на тыльной стороне периметра вращающегося массива.

Полное представление об этих и других видах движения материковых массивов (вытекающих из данной концепции), может служить реальной базой для определения (прогноза) мест концентрации механических напряжений и, значит, определения очагов землетрясений, для любого региона земного шара. А полное знание законов образования и развития литосферы Земли, может способствовать более точному определению условий образования и характера залегания полезных ископаемых, и способствовать решению других фундаментальных проблем геологии и геофизики.

 

 

-10-



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-03-31 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: