Основные характеристики блока второй ступени.




Габаритные размеры, м:

Длина 58.1

Диаметр 7.7

Запас топлива, т. 690-710

Масса блока при отделении, т. 78-86

 

 

Значительным достижением отечественного ракетостроения стало создание многоресурсных маршевых двигателей большой тяги для второй ступени ракеты-носителя «Энергии» на энергоемких компонентах топлива. Конструкторам удалось обеспечить высокие заданные характеристики при минимальных газодинамических потерях, регенетивном охлаждении, стойкости применяемых материалов в среде жидкого водорода.

 

 

Двигатель РД-0120 создан в Воронежском КБ Химавтоматики. Впервые двигатель показан публично в сентябре 1990.

Каждый двигатель закреплен на гидравлическом карданном подвесе, позволяющем отклоняться на |11| в двух перпендикулярных плоскостях. Суммарная наработка (включая более 800 тестовых испытаний) составила более 170 000 секунд за период с 1979 по 1995 г.г. При разработке советско-английского проекта «Hotol» предусматривалось 26-кратное использование РД-0120.

 

Характеристика Значение параметра

 

Наименование РД-0120 (11Д122)

Используемый носитель 2-ая ступень РН «Энергия»

(SL-17)*4

Первый запуск 15 мая 1987

Количество запусков 8 на конец 1998 г.

Сухая масса, кг 3449

Высота, мм 4549

Максимальный диаметр, мм 2420

Цикл двигателя замкнутый, с дожиганием

рабочего тела ТНА

Топливо:

Окислитель жидкий кислород с расходом

376-7 кг/с,

Горючее жидкий водород с расходом

62-78 кг/с

Соотношение компонентов,

окислитель/горючее 6:1

ТНА двухступенчатый

Тяга:

На уровне моря, кН/тс 1461/142.5

В вакууме, кН/тс 1961/190

Диапазон дросселирования, % 25-114

Удельный импульс, с (в вакууме) 455

Давление в камере сгорания, атм 216

Степень расширения сопла (критический

Диаметр 216 мм, среза 2420 мм) 86:1

Время работы при запуске, с 480-500

 

Запуск двигателей первой и второй ступеней осуществляется почти одновременно перед стартом. Суммарная тяга в начале полета – около 3600 тонн. Принятая схема позволяет уйти от проблемы запуска двигателей в невесомости и дополнительно повышает надежность выведения.

 

Блоки первой ступени после выработки топлива отделяются попарно от ракеты, затем разделяются и приземляются в заданном районе. Они могут оснащаться средствами возвращения и посадки, которые размещаются в специальных отсеках. Существуют проекты оснащения блоков первой ступени складываемыми крыльями и системами автоматической посадки, что должно позволить им совершать управляемый планирующий спуск и посадку на посадочную полосу космодрома. После проведения диагностических, профилактических и ремонтно-восстановительных работ возможно их повторное использование. Центральный блок – вторая ступень – отделяется после набора суборбитальной скорости и приводняется в заданном районе акватории Тихого океана. Такая схема выведения позволяет исключить засорения околоземного пространства отработанными крупногабаритными фрагментами ракет-носителей и снизить потребные энергозатраты выведения. Доразгон до орбитальной скорости выполняют двигательные установки полезного груза, орбитального корабля или разгонного блока, тем самым выполняющие функции третьей ступени.

 

Сборка ракеты в пакет, ее транспортировка на специальном агрегате-установщике из монтажно-испытательного корпуса на стартовую позицию, обеспечение силовых, пневмогидравлических и электрических связей с пусковым устройством ведутся с использованием переходного стартово-стыковочного блока (ступень Я), который после пуска ракеты остается на стартовом комплексе и может использоваться повторно.

Важной принципиальной особенностью ракеты-носителя «Энергия» является построение ее на базе блока второй ступени и унифицированных модулей первой ступени. Это придает системе гибкость и позволяет на последующих этапах создать ряд перспективных носителей тяжелого и сверхтяжелого классов в зависимости от числа модулей в их составе. В частности, проработан вариант тяжелого носителя «Энергия-М» грузоподъемностью до 30 тонн на низкой околоземной орбите, состоящей из двух блоков первой ступени и блока второй ступени. Перспективный вариант (РН «Вулкан») с восемью унифицированными блоками первой ступени может стать самым грузоподъемным сверхтяжелым носителем, способным выводить на низкую околоземную орбиту полезный груз массой более 200 тонн.

Для управления движения ракеты на участке выведения маршевые двигатели снабжены прецизионной (точность – до 1% от диапазона перемещений) электрогидравлической системой рулевых приводов. Они развивают суммарное усилие до 50 тонн в каждой плоскости качания маршевых двигателей первой ступени и более 30 тонн – на второй ступени ракеты.

Благодаря принятым мерам повышения надежности и обеспечения живучести (резервирование основных жизненно важных систем и агрегатов, включая маршевые двигатели, рулевые приводы, турбогенераторные источники электропитания, пиротехнические средства, разработка комплекса автономного управления с поэлементным и схемным резервированием, установка специальных средств аварийной защиты, обеспечивающих диагностику состояния маршевых двигателей обеих ступеней и своевременное отключение аварийного агрегата при отклонениях в его работе, применение эффективных систем предупреждения пожара и взрыва) при возникновении внештатной ситуации ракета может продолжать управляемый полет даже с одним выключенным маршевым двигателем первой или второй ступени. В нештатных ситуациях при запуске пилотируемого орбитального корабля конструктивные меры, заложенные в ракете, позволяют либо обеспечить выведение корабля на низкую «одновитковую» траекторию полета по орбите искусственного спутника Земли с последующей посадкой на один из аэродромов, либо осуществить маневр возврата на активном участке выведения с посадкой корабля на полосу, расположенную вблизи стартового комплекса.

 

Основные характеристики ракеты-носителя «Энергия»:



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-03-31 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: