Цифровая цветная проекция




Краткая история цветной фотографии

У истоков цвета

 

Распространено заблуждение, что именно Ньютон открыл, будто солнечный луч состоит из сочетания семи цветов, наглядно продемонстрировав это на опыте с трехгранной стеклянной призмой. Это не совсем верно, поскольку такая призма уже давно была любимой игрушкой ребятишек того времени, любивших пускать солнечные зайчики и играть с радугой в лужах. Но в 1666 г. 23-летний Исаак Ньютон, всю жизнь интересовавшийся оптикой, первым публично заявил, что различие цвета — это отнюдь не объективное явление природы, а сам «белый» свет — всего лишь субъективное восприятие человеческого глаза.

 

Ньютон продемонстрировал, что пропущенный через призму солнечный луч раскладывается на семь основных цветов — от красного до фиолетового, однако объяснял их отличие друг от друга различием в размере частиц (корпускул), попадающих в человеческий глаз. Самыми большими он считал корпускулы красного цвета, самыми маленькими — фиолетового. Ньютону также принадлежит и другое важное открытие. Он показал эффект, который впоследствии будет назван «цветовыми кольцами Ньютона»: если осветить двояковыпуклую линзу лучом монохромного цвета, т. е. или красного, или синего, и спроецировать изображение на экран, то получится картинка из колец двух чередующихся цветов. Кстати, это открытие легло в основу теории интерференции.

 

Через полтора столетия после Ньютона другой исследователь — Гершель (именно он предложил для закрепления снимков использовать тиосульфат натрия, незаменимый и по сей день) обнаружил, что лучи солнечного света, воздействуя на галоидное серебро*, позволяют получать изображения цвета, почти идентичного цвету снимаемого объекта, т.е. цвета, образованного смешением семи основных цветов. Гершель также обнаружил, что в зависимости от того, какие именно лучи отражают тот или иной предмет, он воспринимается нами как окрашенный в тот или иной цвет. Например, зеленое яблоко кажется зеленым, потому что отражает зеленые лучи спектра, а остальные поглощает. Так было положено начало цветной фотографии. К сожалению, Гершелю не удалось найти технологию устойчивого закрепления цвета, полученного на галоидном серебре, — краски быстро темнели на свету. Кроме того, галоидное серебро более чувствительно к сине-голубым лучам и значительно слабее воспринимает желтые и красные. Так что для «равноправной» передачи полного спектра нужно было найти способ сделать фотоматериалы цветочувствительными.

 

В середине второй мировой войны появился способ «Кодаколор», которым и сделан снимок английского истребителя «Киттихок» на территории Северной Африки

Цветная фотография и черно-белая — почти ровесницы. Мир был еще поражен черно-белым изображением окружающей действительности, а пионеры фотографии уже работали над созданием цветных фотоснимков.

 
 

Киноплёнка

Цветные киноплёнки обладают сложной многослойной структурой, унаследованной от первых двухцветных процессов, использовавших две прижатые друг к другу в фильмовом канале киноплёнки с разной спектральной чувствительностью — «бипак». Поэтому первые многослойные киноплёнки носили название «Монопак» (или англ. Integral tripack[]. Появление многослойных киноплёнок стало возможным только в результате совершенствования технологии полива эмульсий, поскольку толщина отдельных эмульсионных слоёв таких плёнок не превышает 10 микрон[]. Кроме того, все слои должны быть надёжно соединены, чтобы не происходило их отслоения при изгибах и лабораторной обработке киноплёнки.

 

Современные цветные киноплёнки основаны на использовании субтрактивного синтеза цвета из трёх дополнительных цветов: жёлтого, пурпурного и голубого. Цветоделение происходит за счёт различной спектральной чувствительности разных светочувствительных слоёв и наличия промежуточных фильтрующих слоёв, окрашенных красителями, растворяющимися в процессе проявления[]. Показанный на схеме разрез цветной негативной киноплёнки иллюстрирует её строение и вид после лабораторной обработки. Два верхних светочувствительных полуслоя C и D чувствительны только к синему свету из-за ортохроматической сенсибилизации — естественной для фотоэмульсии. Пройдя через синечувствительный слой, свет попадает на жёлтый фильтрующий подслой E, не пропускающий синий цвет, к которому также чувствительны два других слоя: зелёно- и красночувствительный[]. Средние слои F и G сенсибилизированы к зелёному и синему свету, поэтому регистрируют зелёную составляющую цветоделённого изображения. Два нижних светочувствительных слоя I и J обладают панхроматической сенсибилизацией с «провалом» в зелёной области, поэтому регистрируют только красную составляющую. Каждый цвет регистрируется двумя полуслоями разной светочувствительности для расширения фотографической широты при сохранении небольшой зернистости изображения.

 

Кроме негативно-позитивного цветного процесса существует обращаемый, исторически появившийся первым[56]. При этом позитивное цветное изображение получается непосредственно в киноплёнке, на которую производится съёмка. Качество такого изображения выше, чем при негативно-позитивном процессе за счёт однократного цветоделения. Однако технология требует особой точности экспонирования и соблюдения цветового баланса освещения, поскольку ошибки не поддаются последующему исправлению, возможному при печати с негатива. Обращаемые киноплёнки широко использовались кинолюбителями и тележурналистами до появления компактных видеокамер, но в профессиональном кинематографе не нашли применения из-за малой пригодности для тиражирования фильмов.

 

 


Решётка Байера

Современные цифровые кинокамеры для съёмки цветного изображения используют полупроводниковые матрицы, осуществляющие цветоделение при помощи мозаичных цветных светофильтров, расположенных над светочувствительными элементами. При этом фотодиоды, расположенные под красными, зелёными и синими светофильтрами, получают информацию соответственно о красной, зелёной и синей составляющих цветоделённого изображения. Такой способ цветоделения позволяет строить компактные камеры, но обладает рядом недостатков, влияющих на качество изображения. В частности наличие цветоделительной решётки может приводить к появлению муара и снижает разрешающую способность матрицы. По такой схеме сегодня строятся не только цифровые кинокамеры из-за возможности использования стандартной киносъёмочной оптики, но и многие видеокамеры из-за относительной дешевизны и ненужности громоздкой цветоделительной системы.

 

 

Трёхматричная система

Цветоделение при помощи дихроичных призм получило наибольшее распространение в телевидении стандартной чёткости благодаря высокому качеству цветоделения. Многие видеокамеры HDTV, использующиеся также для съёмки цифрового кино, до сих пор строятся по такой схеме, лишённой многих недостатков решётки Байера. Трёхматричная технология избавлена от муара и не требует оптической фильтрации деталей, снижающей разрешение системы. Несмотря на достоинства, такой принцип цветоделения накладывает существенные ограничения, не позволяющие пользоваться стандартной киносъёмочной оптикой, дающей привычный для кинематографа характер изображения. Камеры с призменным цветоделительным блоком оснащаются объективами меньших фокусных расстояний из-за малых размеров светочувствительных матриц. Исключение составляют случаи использования DOF-адаптеров с промежуточным изображением, позволяющих использовать стандартную оптику на камерах с небольшими матрицами.

 

 

Цифровая цветная проекция

Для цифровой кинопроекции цветного изображения используется цветоделение вращающимся обтюратором с цветными светофильтрами. Такой же принцип использовался в технологии «Кинемаколор», привнося в изображение цветную кайму и мерцание цветов. Однако съёмка современных фильмов ведётся по другим технологиям с одновременным считыванием цветоделённых изображений, а диск со светофильтрами вращается в несколько раз быстрее, исключая мерцания. Изображение может воспроизводиться по технологиям DLP или LCoS подвижными микрозеркалами или полупроводниковой плёнкой. Несмотря на достоинства цифровой проекции, существенная часть кинопроката до сих пор основана на традиционной позитивной цветной киноплёнке, осуществляющей синтез цвета субтрактивным способом при помощи красителей в многослойной эмульсии. Печать плёночных фильмокопий производится с дубльнегатива, изготавливающегося с мастер-позитива или цифровой мастер-копии лазерным фильм-рекордером.

Многослойные киноплёнки

Совершенствование субтрактивных технологий цветного кино завершилось созданием цветных многослойных киноплёнок, первоначально пригодных только для печати цветного позитива с цветоделённых чёрно-белых контратипов. Первым таким фотоматериалом стала плёнка «Гаспарколор», выпущенная в 1933 году по патенту венгерского учёного Бела Гаспара. Цветное позитивное изображение в ней получалось химическим обесцвечиванием азокрасителей, находящихся в зонально-чувствительных эмульсионных слоях[]. Зелёно- и синечувствительный слои такой киноплёнки наносились на одну сторону подложки, а красночувствительный — на другую[]. Технология стала серьёзным конкурентом гидротипной печати, но использовалась только для мультипликации.

 

В 1935 году Kodak представил первую многослойную киноплёнку, пригодную для съёмки. Это был цветной обращаемый «Кодахром», предназначенный для любительских 16-мм аппаратов, а в 1936 году на рынке появилась его 8-мм разновидность и 35-мм фотоплёнка для слайдов[]. «Техниколор» начал производство цветной обращаемой плёнки «Монопак» в 1941 году. Это была кинематографическая версия фотоплёнки «Кодахром», предназначенная для съёмок вне студии, где громоздкие трёхплёночные камеры были непригодны. Последующая печать фильмокопий проводилась гидротипным способом после изготовления трёх цветоделённых матриц с исходного цветного позитива. Летом 1937 года немецкая Agfa запустила производство первых в мире хромогенных негативных многослойных киноплёнок «Agfacolor B» и «Agfacolor G», на которые отснят короткометражный игровой фильм «Отзвучит песня» (нем. Ein lied verklingt)[]. Чтобы отличить многослойную киноплёнку от предыдущей линзово-растровой разработки, выпускавшейся с 1932 года под тем же названием, первые годы к названию «Агфаколор» добавляли слово «новый»[]. До конца Второй Мировой войны немецкие цветные плёнки не экспортировались и использовались только немецкой государственной киностудией UFA под контролем министерства пропаганды Германии[]. После победы над Германией Советскому Союзу достались большие запасы цветной киноплёнки Agfa на складах компании. Кроме того, вывезенные по репарациям оборудование и технологии стали основой для запуска производства собственных многослойных киноплёнок типа Sovcolor[]. В результате съёмка на три негатива в СССР после войны была прекращена. В Голливуде этот процесс оставался основным вплоть до запуска производства многослойных киноплёнок «Anscocolor» по немецкой технологии в 1949 году[].

 

Первые многослойные киноплёнки уступали в качестве цветопередачи трехплёночной технологии съёмки, которая использовалась до середины 1950-х годов, несмотря на сложность и дороговизну. Кроме того, недостаток фотографической широты и чувствительность к изменениям цветовой температуры освещения делали обращаемые плёнки малопригодными в качестве исходного носителя при массовом тиражировании. Многослойная негативная фотоплёнка «Кодаколор» (англ. Kodacolor) увидела свет только в 1942 году[], а негативная киноплёнка «Kodak Eastmancolor» была анонсирована лишь восемь лет спустя[] и сразу же использована для съёмки документального фильма «Королевское путешествие» (англ. Royal Journey), который вышел на экраны в декабре 1951-го. В следующем году Kodak выпустил улучшенную версию негативной плёнки, пригодной для профессионального кинематографа. С её появлением съёмка стала проводиться обычными киносъёмочными аппаратами, с последующим изготовлением трёх цветоделённых матриц с цветного негатива и гидротипной печатью.

Color film


Murad Chavtaraev represents

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-26 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: